SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Jin Yanghao) srt2:(2023)"

Sökning: WFRF:(Jin Yanghao) > (2023)

  • Resultat 1-5 av 5
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Jin, Yanghao, et al. (författare)
  • Carbon and H-2 recoveries from plastic waste by using a metal-free porous biocarbon catalyst
  • 2023
  • Ingår i: Journal of Cleaner Production. - : Elsevier BV. - 0959-6526 .- 1879-1786. ; 404
  • Tidskriftsartikel (refereegranskat)abstract
    • Carbon and H2 recoveries from plastic waste enable high value-added utilizations of plastic waste while mini-mizing its GHG emissions. The objective of this study is to explore the use of a metal-free biocarbon catalyst for waste plastic pyrolysis and in-line catalytic cracking to produce H2-rich gases and carbon. The results show that the biocarbon catalyst exhibits a good catalytic effect and stability for various plastic wastes. Increasing the C/P ratio from 0 to 2, induce an increase in the conversion rate of C and H in plastics to carbon and H2 from 57.1% to 68.7%, and from 22.7% to 53.5%, respectively. Furthermore, a carbon yield as high as 580.6 mg/gplastic and an H2 yield as high as 68.6 mg/gplastic can be obtained. The hierarchical porous structure with tortuous channels of biocarbon extends the residence time of pyrolysis volatiles in the high-temperature catalytic region and thereby significantly promotes cracking reactions.
  •  
2.
  • Jin, Yanghao, et al. (författare)
  • From Waste Biomass to Hard Carbon Anodes : Predicting the Relationship between Biomass Processing Parameters and Performance of Hard Carbons in Sodium-Ion Batteries
  • 2023
  • Ingår i: Processes. - : MDPI AG. - 2227-9717. ; 11:3
  • Forskningsöversikt (refereegranskat)abstract
    • Sodium-ion batteries (SIBs) serve as the most promising next-generation commercial batteries besides lithium-ion batteries (LIBs). Hard carbon (HC) from renewable biomass resources is the most commonly used anode material in SIBs. In this contribution, we present a review of the latest progress in the conversion of waste biomass to HC materials, and highlight their application in SIBs. Specifically, the following topics are discussed in the review: (1) the mechanism of sodium-ion storage in HC, (2) the HC precursor's sources, (3) the processing methods and conditions of the HCs production, (4) the impact of the biomass types and carbonization temperature on the carbon structure, and (5) the effect of various carbon structures on electrochemical performance. Data from various publications have been analyzed to uncover the relationship between the processing conditions of biomass and the resulting structure of the final HC product, as well as its electrochemical performance. Our results indicate the existence of an ideal temperature range (around 1200 to 1400 degrees C) that enhances the formation of graphitic domains in the final HC anode and reduces the formation of open pores from the biomass precursor. This results in HC anodes with high storage capacity (>300 mAh/g) and high initial coulombic efficiency (ICE) (>80%).
  •  
3.
  • Shi, Ziyi, et al. (författare)
  • Continuous catalytic pyrolysis of biomass using a fluidized bed with commercial-ready catalysts for scale-up
  • 2023
  • Ingår i: Energy. - : Elsevier Ltd. - 0360-5442 .- 1873-6785. ; 273
  • Tidskriftsartikel (refereegranskat)abstract
    • The use of catalytic fast pyrolysis (CFP) of biomass to produce high-quality bio-oils as potential substitutes for conventional fuels plays an essential role in the decarbonization of the world. In this study, continuous CFP tests of sawdust using three commercial-ready catalysts were performed. The overall objective is to screen appropriate catalysts and catalyst loading amounts for further commercialization and upgrading by evaluating the quality of the organic fraction bio-oils and clarifying the relationship between the hydrogen-to-carbon atomic effective (H/Ceff) ratio and bio-oil yield. The results displayed that, owing to a cracking effect of the catalyst, all catalytic cases had higher H/Ceff ratios and larger relative area percentages of hydrocarbons determined by NMR. Thermogravimetric analysis reveals that, compared to non-catalytic bio-oils, catalytic bio-oils showed more distillates in the diesel range. Increasing the catalyst-loading amount also showed the same effect. Overall, all bio-oil products from catalytic cases had H/Ceff ratios higher than 0.6, indicating the production of promising oil for hydrodeoxygenation. By analyzing and fitting the data from this work and comparing with the literature, it could be concluded that its yield would decrease as the bio-oil product quality increases (the H/Ceff ratios increase). © 2023 The Authors
  •  
4.
  • Yang, Hanmin, 1992-, et al. (författare)
  • Carbon-negative valorization of biomass waste into affordable green hydrogen and battery anodes
  • 2023
  • Ingår i: International journal of hydrogen energy. - : Elsevier BV. - 0360-3199 .- 1879-3487.
  • Tidskriftsartikel (övrigt vetenskapligt/konstnärligt)abstract
    • The global Sustainable Development Goals highlight the necessity for affordable and clean energy, designated as SDG7. A sustainable and feasible biorefinery concept is proposed for the carbon-negative utilization of biomass waste for affordable H2 and battery anode material production. Specifically, an innovative tandem biocarbon + NiAlO + biocarbon catalyst strategy is constructed to realize a complete reforming of biomass pyro-vapors into H2+CO (as a mixture). The solid residues from pyrolysis are upgraded into high-quality hard carbon (HCs), demonstrating potential as sodium ion battery (SIBs) anodes. The product, HC-1600-6h, exhibited great electrochemical performance when employed as (SIBs) anodes (full cell: 263 Wh/kg with ICE of 89%). Ultimately, a comprehensive process is designed, simulated, and evaluated. The process yields 75 kg H2, 169 kg HCs, and 891 kg captured CO2 per ton of biomass achieving approx. 100% carbon and hydrogen utilization efficiencies. A life cycle assessment estimates a biomass valorization process with negative-emissions (−0.81 kg CO2/kg-biomass, reliant on Sweden wind electricity). A techno-economic assessment forecasts a notably profitable process capable of co-producing affordable H2 and hard carbon battery anodes. The payback period of the process is projected to fall within two years, assuming reference prices of 13.7 €/kg for HCs and 5 €/kg for H2. The process contributes to a novel business paradigm for sustainable and commercially viable biorefinery process, achieving carbon-negative valorization of biomass waste into affordable energy and materials.
  •  
5.
  • Yang, Hanmin, et al. (författare)
  • Evaluation of Engineered Biochar-Based Catalysts for Syngas Production in a Biomass Pyrolysis and Catalytic Reforming Process
  • 2023
  • Ingår i: Energy & Fuels. - : American Chemical Society. - 0887-0624 .- 1520-5029. ; 37, s. 5942-
  • Tidskriftsartikel (refereegranskat)abstract
    • Biochar, originating from biomass pyrolysis, has been proven a promising catalyst for tar cracking/reforming with great coke resistance. This work aims to evaluate various engineered biochar-based catalysts on syngas production in a biomass pyrolysis and catalytic reforming process without feeding extra steam. The tested engineered biochar catalysts include physical- and chemical-activated, nitrogen-doped, and nickel-doped biochars. The results illustrated that the syngas yields were comparable when using biochar and activated biochar as catalysts. A relatively high specific surface area (SSA) and a hierarchical porous structure are beneficial for syngas and hydrogen production. A 2 h physical-activated biochar catalyst induced the syngas with the highest H2/CO ratio (1.5). The use of N-doped biochar decreased the syngas yield sharply due to the collapse of the pore structure but obtained syngas with the highest LHVgas (18.5MJ/Nm3). The use of Ni-doped biochar facilitated high syngas and hydrogen yields (78.2 wt % and 26 mmol H2/g-biomass) and improved gas energy conversion efficiency (73%). Its stability and durability test showed a slight decrease in performance after a three-time repetitive use. A future experiment with a longer time is suggested to determine when the catalyst will finally deactivate and how to reduce the catalyst deterioration. © 2023 The Authors. 
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-5 av 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy