SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Jin Yanghao) srt2:(2024)"

Sökning: WFRF:(Jin Yanghao) > (2024)

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Jin, Yanghao, et al. (författare)
  • A novel three-stage ex-situ catalytic pyrolysis process for improved bio-oil yield and quality from lignocellulosic biomass
  • 2024
  • Ingår i: Energy. - : Elsevier Ltd. - 0360-5442 .- 1873-6785. ; 295
  • Tidskriftsartikel (refereegranskat)abstract
    • This study aims to improve the quality and yield of bio-oil produced from ex-situ catalytic pyrolysis of lignocellulosic biomass (sawdust) using a combination of stage catalysts with Al-MCM-41, HZSM-5, and ZrO2. The research employed various methods, including thermogravimetric analysis (TGA), differential scanning calorimetry, bench-scale experiments, and process simulations to analyze the kinetics, thermodynamics, products, and energy flows of the catalytic upgrading process. The introduction of ZrO2 enhances the yield of monoaromatic hydrocarbons (MAHs) in heavy organics. Compared with the dual-catalyst case, the MAHs yield escalates by approximately 344% at a catalyst ratio of 1:3:0.25. Additionally, GC-MS data indicate that the incorporation of ZrO2 promotes the deoxygenation reaction of the guaiacol compound and the oligomerization reactions of PAHs. The integration of ZrO2 as the third catalyst enhances the yield of heavy organics significantly, achieving 16.85% at a catalyst ratio of 1:3:1, which increases by nearly 35.6% compared to the dual-catalyst case. Also, the addition of ZrO2 as the third catalyst enhanced the energy distribution in heavy organics. These findings suggest that the combination of these catalysts improves the fuel properties and yields of the bio-oil.
  •  
2.
  • Shi, Ziyi, et al. (författare)
  • Bio-based anode material production for lithium–ion batteries through catalytic graphitization of biochar : the deployment of hybrid catalysts
  • 2024
  • Ingår i: Scientific Reports. - : Springer Nature. - 2045-2322. ; 14:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Producing sustainable anode materials for lithium-ion batteries (LIBs) through catalytic graphitization of renewable biomass has gained significant attention. However, the technology is in its early stages due to the bio-graphite's comparatively low electrochemical performance in LIBs. This study aims to develop a process for producing LIB anode materials using a hybrid catalyst to enhance battery performance, along with readily available market biochar as the raw material. Results indicate that a trimetallic hybrid catalyst (Ni, Fe, and Mn in a 1:1:1 ratio) is superior to single or bimetallic catalysts in converting biochar to bio-graphite. The bio-graphite produced under this catalyst exhibits an 89.28% degree of graphitization and a 73.95% conversion rate. High-resolution transmission electron microscopy (HRTEM) reveals the dissolution–precipitation mechanism involved in catalytic graphitization. Electrochemical performance evaluation showed that the trimetallic hybrid catalyst yielded bio-graphite with better electrochemical performances than those obtained through single or bimetallic hybrid catalysts, including a good reversible capacity of about 293 mAh g−1 at a current density of 20 mA/g and a stable cycle performance with a capacity retention of over 98% after 100 cycles. This study proves the synergistic efficacy of different metals in catalytic graphitization, impacting both graphite crystalline structure and electrochemical performance.
  •  
3.
  • Yang, Hanmin, 1992-, et al. (författare)
  • Distributed electrified heating for efficient hydrogen production
  • 2024
  • Ingår i: Nature Communications. - : Nature Research. - 2041-1723. ; 15:1
  • Tidskriftsartikel (refereegranskat)abstract
    • This study introduces a distributed electrified heating approach that is able to innovate chemical engineering involving endothermic reactions. It enables rapid and uniform heating of gaseous reactants, facilitating efficient conversion and high product selectivity at specific equilibrium. Demonstrated in catalyst-free CH4 pyrolysis, this approach achieves stable production of H2 (530 g h−1 L reactor−1) and carbon nanotube/fibers through 100% conversion of high-throughput CH4 at 1150 °C, surpassing the results obtained from many complex metal catalysts and high-temperature technologies. Additionally, in catalytic CH4 dry reforming, the distributed electrified heating using metallic monolith with unmodified Ni/MgO catalyst washcoat showcased excellent CH4 and CO2 conversion rates, and syngas production capacity. This innovative heating approach eliminates the need for elongated reactor tubes and external furnaces, promising an energy-concentrated and ultra-compact reactor design significantly smaller than traditional industrial systems, marking a significant advance towards more sustainable and efficient chemical engineering society.
  •  
4.
  • Yang, Hanmin, 1992-, et al. (författare)
  • Distributed electrified heating for efficient hydrogen production
  • 2024
  • Ingår i: Nature Communications. - : Nature Research. - 2041-1723. ; 15
  • Tidskriftsartikel (refereegranskat)abstract
    • This study introduces a distributed electrified heating approach that is able to innovate chemical engineering involving endothermic reactions. It enables rapid and uniform heating of gaseous reactants, facilitating efficient conversion and high product selectivity at specific equilibrium. Demonstrated in catalyst-free CH4 pyrolysis, this approach achieves stable production of H2 (530 g h−1 L reactor−1) and carbon nanotube/fibers through 100% conversion of high-throughput CH4 at 1150 °C, surpassing the results obtained from many complex metal catalysts and high-temperature technologies. Additionally, in catalytic CH4 dry reforming, the distributed electrified heating using metallic monolith with unmodified Ni/MgO catalyst washcoat showcased excellent CH4 and CO2 conversion rates, and syngas production capacity. This innovative heating approach eliminates the need for elongated reactor tubes and external furnaces, promising an energy-concentrated and ultra-compact reactor design significantly smaller than traditional industrial systems, marking a significant advance towards more sustainable and efficient chemical engineering society.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy