SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Jing Yujia) srt2:(2015-2019)"

Sökning: WFRF:(Jing Yujia) > (2015-2019)

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Jing, Yujia, 1985, et al. (författare)
  • Asymmetric cationic liposomes designed for heat-activated association with cells
  • 2017
  • Ingår i: Colloids and Surfaces B: Biointerfaces. - : Elsevier BV. - 0927-7765 .- 1873-4367. ; 151, s. 112-118
  • Tidskriftsartikel (refereegranskat)abstract
    • Improved anticancer drugs and drug carriers are needed in combination therapies, such as hyperthermia-assisted chemotherapy. Liposomal drug carriers with advanced functions are attractive candidates for targeted accumulation and drug release in response to heat stimulus. We report on the design of liposomes with a heat-activated surface function. Our design is based on asymmetric lipid membranes with a defined gel to liquid-crystalline phase-transition temperature around 41 °C. Asymmetry between the inner and the outer membrane leaflets was generated through selective PEGylation of cationic lipids in the outer membrane leaflet. In a physiological buffer, the PEGylated asymmetric liposomes had a neutral zeta potential and did not bind to planar anionic model membranes. In contrast, following upon heat-activation, binding of liposomes to the model membranes occurred. Release of a hydrophilic dye encapsulated in the asymmetric liposomes occurred at 40 °C. Enhanced uptake of the asymmetric liposomes by hypopharyngeal carcinoma cells (FaDu cells) was observed when hyperthermia was applied compared to experiments performed at 37 °C. These results show the potential of asymmetric liposomes for localized delivery of drugs into cells in response to (external) temperature stimulus.
  •  
2.
  • Jing, Yujia, 1985, et al. (författare)
  • Heat-activated liposome targeting to streptavidin-coated surfaces
  • 2015
  • Ingår i: Biochimica et Biophysica Acta - Biomembranes. - : Elsevier BV. - 1879-2642 .- 0005-2736. ; 1848:6, s. 1417-1423
  • Tidskriftsartikel (refereegranskat)abstract
    • There is a great need of improved anticancer drugs and corresponding drug carriers. In particular, liposomal drug carriers with heat-activated release and targeting functions are being developed for combined hyperthermia and chemotherapy treatments of tumors. The aim of this study is to demonstrate the heat-activation of liposome targeting to biotinylated surfaces, in model experiments where streptavidin is used as a pretargeting protein. The design of the heat-activated liposomes is based on liposomes assembled in an asymmetric structure and with a defined phase transition temperature. Asymmetry between the inside and the outside of the liposome membrane was generated through the enzymatic action of phospholipase D, where lipid head groups in the outer membrane leaflet, i.e. exposed to the enzyme, were hydrolyzed. The enzymatically treated and purified liposomes did not bind to streptavidin-modified surfaces. When activation heat was applied, starting from 22 degrees C, binding of the liposomes occurred once the temperature approached 33 +/- 0.5 degrees C. Moreover, it was observed that the asymmetric structure remained stable for at least 2 weeks. These results show the potential of asymmetric liposomes for the targeted binding to cell membranes in response to (external) temperature stimulus. By using pretargeting proteins, this approach can be further developed for personalized medicine, where tumor-specific antibodies can be selected for the conjugation of pretargeting agents.
  •  
3.
  • Jing, Yujia, 1985 (författare)
  • Hyperthermia-responsive liposomal systems
  • 2015
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Abstract Sophisticated liposomal systems are emerging at an increasing rate to meet the demands for multifunctional drug carriers in chemotherapies in combined with hyperthermia. For example, liposomal drug carriers for temperature-controlled drug release under hyperthermic conditions have recently been tested in clinical trials. More advanced designs of liposomes are expected to release encapsulated contents and activate hidden surface-functions in response to heat stimulus. Towards this aim, the present thesis is focused on formulating asymmetric lipid systems that can preserve functional moieties, and reactivate the targeted function as well as release the encapsulated compounds upon local heating. The design of the asymmetric liposomal systems utilizes the heat-activated transmembrane lipid diffusion during gel to liquid-crystalline phase transitions of the lipid membranes.Rational design of advanced liposomal drug-delivery systems will require understanding of the physicochemical properties of lipid membranes under, e.g., hyperthermic conditions. Here, supported lipid membranes on planar solid surfaces were used for model studies of lipid composition yielding a gel to liquid crystalline phase-transition temperature in the range 40 – 45 °C. It was found that the liposome-to-membrane formation process is not only size-dependent but also governed by temperature. Two methods of preparing supported asymmetric lipid membranes were investigated. As a proof-of-concept, the upper leaflets were either replaced or chemically transformed by enzymatic hydrolysis. The processes were monitored using surface sensitive techniques such as quartz crystal microbalance with dissipation (QCM-D) and dual polarization interferometry (DPI). The asymmetric structures were stable at a room temperature, while lipid flip-flop was induced upon increasing of the temperature. Transmembrane lipid exchange in the asymmetric structure under hyperthermic conditions was demonstrated by detecting, through streptavidin binding, biotinylated lipids appearing at the top leaflet which were first located in the lower leaflet. The protocols developed for the supported lipid systems were adapted for the preparation of asymmetric liposomes. Biotinylated asymmetric liposomes were used as a model system to demonstrate the principle of heat-activated targeting of asymmetric liposomes to streptavidin-coated surfaces. More biologically relevant interaction was utilized to replace the biotin-streptavidin function, where asymmetric cationic liposomes were binding to anionic supported membrane immobilized surfaces upon heating. The described strategies for assembly of asymmetric supported membranes provide a guide to the development of multifunctional drug carriers. The protocols used in experiments with supported membranes were readily adapted to the preparation of asymmetric liposomes. The ongoing study tests the asymmetric liposomes in vitro, which is designed to demonstrate hyperthermia treatment can enhance accumulation of liposomes in FaDu cells, and at the same time activate release of the encapsulated components. The results of in vitro tests can be used to analyze the feasibility of utilizing the asymmetric liposomes as a platform in vivo to explore further improvement in their functions upon microwave hyperthermia.
  •  
4.
  • Wayment-Steele, H. K., et al. (författare)
  • Effects of Al3+ on Phosphocholine and Phosphoglycerol Containing Solid Supported Lipid Bilayers
  • 2016
  • Ingår i: Langmuir. - : American Chemical Society (ACS). - 1520-5827 .- 0743-7463. ; 32:7, s. 1771-1781
  • Tidskriftsartikel (refereegranskat)abstract
    • Aluminum has attracted great attention recently as it has been suggested by several studies to be associated with increased risks for Alzheimer's and Parkinson's disease. The toxicity of the trivalent ion is assumed to derive from structural changes induced in lipid bilayers upon binding, though the mechanism of this process is still not well understood. In the present study we elucidate the effect of Al3+ on supported lipid bilayers (SLBs) using fluorescence microscopy, the quartz crystal microbalance with dissipation (QCM-D) technique, dual-polarization interferometry (DPI), and molecular dynamics (MD) simulations. Results from these techniques show that binding of Al3+ to SLBs containing negatively charged and neutral phospholipids induces irreversible changes such as domain formation. The measured variations in SLB thickness, birefringence, and density indicate a phase transition from a disordered to a densely packed ordered phase.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy