SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Jordana M.) srt2:(2015-2019)"

Sökning: WFRF:(Jordana M.) > (2015-2019)

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Traylor, Matthew, et al. (författare)
  • Genetic Variation at 16q24.2 is associated with small vessel stroke.
  • 2017
  • Ingår i: Annals of neurology. - : Wiley. - 1531-8249 .- 0364-5134. ; 81:3, s. 383-394
  • Tidskriftsartikel (refereegranskat)abstract
    • Genome-wide association studies (GWAS) have been successful at identifying associations with stroke and stroke subtypes, but have not yet identified any associations solely with small vessel stroke (SVS). SVS comprises a quarter of all ischaemic stroke and is a major manifestation of cerebral small vessel disease, the primary cause of vascular cognitive impairment. Studies across neurological traits have shown younger onset cases have an increased genetic burden. We leveraged this increased genetic burden by performing an age-at-onset informed GWAS meta-analysis, including a large younger onset SVS population, to identify novel associations with stroke.We used a three-stage age-at-onset informed GWAS to identify novel genetic variants associated with stroke. On identifying a novel locus associated with SVS, we assessed its influence on other small vessel disease phenotypes, as well as on mRNA expression of nearby genes, and on DNA methylation of nearby CpG sites in whole blood and in the fetal brain.We identified an association with SVS in 4,203 cases and 50,728 controls on chromosome 16q24.2 (OR(95% CI)=1.16(1.10-1.22); p=3.2x10(-9) ). The lead SNP (rs12445022) was also associated with cerebral white matter hyperintensities (OR(95% CI)=1.10(1.05-1.16); p=5.3x10(-5) ; N=3,670), but not intracerebral haemorrhage (OR(95% CI)=0.97(0.84-1.12); p=0.71; 1,545 cases, 1,481 controls). rs12445022 is associated with mRNA expression of ZCCHC14 in arterial tissues (p=9.4x10(-7) ), and DNA methylation at probe cg16596957 in whole blood (p=5.3x10(-6) ).16q24.2 is associated with SVS. Associations of the locus with expression of ZCCHC14 and DNA methylation suggest the locus acts through changes to regulatory elements. This article is protected by copyright. All rights reserved.
  •  
2.
  • Kurylo, Chad M., et al. (författare)
  • Endogenous rRNA Sequence Variation Can Regulate Stress Response Gene Expression and Phenotype
  • 2018
  • Ingår i: Cell Reports. - : CELL PRESS. - 2211-1247. ; 25:1, s. 236-248.e6
  • Tidskriftsartikel (refereegranskat)abstract
    • Prevailing dogma holds that ribosomes are uniform in composition and function. Here, we show that nutrient limitation-induced stress in E. coli changes the relative expression of rDNA operons to alter the rRNA composition within the actively translating ribosome pool. The most upregulated operon encodes the unique 16S rRNA, rrsH, distinguished by conserved sequence variation within the small ribosomal subunit. rrsH-bearing ribosomes affect the expression of functionally coherent gene sets and alter the levels of the RpoS sigma factor, the master regulator of the general stress response. These impacts are associated with phenotypic changes in antibiotic sensitivity, biofilm formation, and cell motility and are regulated by stress response proteins, ReIA and ReIE, as well as the metabolic enzyme and virulence-associated protein, AdhE. These findings establish that endogenously encoded, naturally occurring rRNA sequence variation can modulate ribosome function, central aspects of gene expression regulation, and cellular physiology.
  •  
3.
  • Wahl, Simone, et al. (författare)
  • Epigenome-wide association study of body mass index, and the adverse outcomes of adiposity
  • 2017
  • Ingår i: Nature. - : NATURE PUBLISHING GROUP. - 0028-0836 .- 1476-4687. ; 541:7635, s. 81-
  • Tidskriftsartikel (refereegranskat)abstract
    • Approximately 1.5 billion people worldwide are overweight or affected by obesity, and are at risk of developing type (2) diabetes, cardiovascular disease and related metabolic and inflammatory disturbances(1,2). Although the mechanisms linking adiposity to associated clinical conditions are poorly understood, recent studies suggest that adiposity may influence DNA methylation(3-6), a key regulator of gene expression and molecular phenotype(7). Here we use epigenome-wide association to show that body mass index (BMI; a key measure of adiposity) is associated with widespread changes in DNA methylation (187 genetic loci with P < 1 x 10(-7), range P = 9.2 x 10(-8) to 6.0 x 10(-46); n = 10,261 samples). Genetic association analyses demonstrate that the alterations in DNA methylation are predominantly the consequence of adiposity, rather than the cause. We find that methylation loci are enriched for functional genomic features in multiple tissues (P < 0.05), and show that sentinel methylation markers identify gene expression signatures at 38 loci (P < 9.0 x 10(-6), range P = 5.5 x 10(-6) to 6.1 x 10(-35), n = 1,785 samples). The methylation loci identify genes involved in lipid and lipoprotein metabolism, substrate transport and inflammatory pathways. Finally, we show that the disturbances in DNA methylation predict future development of type 2 diabetes (relative risk per 1 standard deviation increase in methylation risk score: 2.3 (2.07-2.56); P = 1.1 x 10(-54)). Our results provide new insights into the biologic pathways influenced by adiposity, and may enable development of new strategies for prediction and prevention of type 2 diabetes and other adverse clinical consequences of obesity.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy