SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Jurvelin J. S.) srt2:(2010-2014)"

Sökning: WFRF:(Jurvelin J. S.) > (2010-2014)

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Malo, M K H, et al. (författare)
  • Ultrasound Backscatter Measurements of Intact Human Proximal Femurs - Relationships of ultrasound parameters with tissue structure and mineral density.
  • 2014
  • Ingår i: Bone. - : Elsevier BV. - 1873-2763 .- 8756-3282. ; 64:Online April 24, 2014, s. 240-245
  • Tidskriftsartikel (refereegranskat)abstract
    • Ultrasound reflection and backscatter parameters are related to mechanical and structural properties of bone in vitro. However, the potential of ultrasound reflection and backscatter measurements has not been tested with intact human proximal femurs ex vivo. We hypothesize that ultrasound backscatter can be measured from intact femurs and that the measured backscattered signal is associated with cadaver age, bone mineral density (BMD) and trabecular bone microstructure. In this study, human femoral bones of 16 male cadavers (47.0±16.1years, range: 21-77 years) were investigated using pulse-echo ultrasound measurements at the femoral neck in the antero-posterior direction and at the trochanter major in the antero-posterior and latero-medial directions. Recently introduced ultrasound backscatter parameters, independent of cortical thickness, e.g., time slope of apparent integrated backscatter (TSAB) and mean of the backscatter difference technique (MBD) were obtained and compared with the structural properties of trabecular bone samples, extracted from the locations of ultrasound measurements. Moreover, more conventional backscatter parameters, e.g., apparent integrated backscatter (AIB) and frequency slope of apparent integrated backscatter (FSAB) were analysed. Bone mineral density of the intact femurs was evaluated using dual energy X-ray absorptiometry (DXA). AIB and MDB measured from the femoral neck correlated significantly (p<0.01) with the neck BMD (R(2)=0.44 and 0.45), cadaver age (R(2)=0.61 and 0.41) and several structural parameters, e.g., bone volume fraction (R(2)=0.33 and 0.39, p<0.05 and p<0.01), respectively. To conclude, ultrasound backscatter parameters, measured from intact proximal femurs, are significantly related (p<0.05) to trabecular bone structural properties and mineral density.
  •  
2.
  • Koistinen, Arto P, et al. (författare)
  • Short-term exercise-induced improvements in bone properties are for the most part not maintained during aging in hamsters.
  • 2014
  • Ingår i: Experimental Gerontology. - : Elsevier BV. - 1873-6815 .- 0531-5565. ; 51, s. 46-53
  • Tidskriftsartikel (refereegranskat)abstract
    • Physical exercise during growth affects composition, structure and mechanical properties of bone. In this study we investigated whether the beneficial effects of exercise during the early growth phase have long-lasting effects or not. Female Syrian golden hamsters (total n=152) were used in this study. Half of the hamsters had access to running wheels during their rapid growth phase (from 1 to 3months of age). The hamsters were sacrificed at the ages of 1, 3, 12, and 15months. The diaphysis of the mineralized humerus was analyzed with microCT and subjected to three-point-bending mechanical testing. The trabecular bone in the tibial metaphysis was also analyzed with microCT. The collagen matrix of the humerus bone was studied by tensile testing after decalcification. The weight of the hamsters as well as the length of the bone and the volumetric bone mineral density (BMDvol) of the humerus was higher in the running group at the early age (3months). Moreover, the mineralized bone showed improved mechanical properties in humerus and had greater trabecular thickness in the subchondral bone of tibia in the runners. However, by the age of 12 and 15months, these differences were equalized with the sedentary group. The tensile strength and Young's modulus of decalcified humerus were higher in the runners at early stage, indicating a stronger collagen network. In tibial metaphysis, trabecular thickness was significantly higher for the runners in the old age groups (12 and 15months). Our study demonstrates that physical exercise during growth improves either directly or indirectly through weight gain bone properties of the hamsters. However, the beneficial effects were for the most part not maintained during aging.
  •  
3.
  • Turunen, Mikael J., et al. (författare)
  • Composition and microarchitecture of human trabecular bone change with age and differ between anatomical locations
  • 2013
  • Ingår i: Bone. - : Elsevier BV. - 1873-2763 .- 8756-3282. ; 54:1, s. 118-125
  • Tidskriftsartikel (refereegranskat)abstract
    • The microarchitecture of trabecular bone adapts to its mechanical loading environment according to Wolff's law and alters with age. Trabecular bone is a metabolically active tissue, thus, its molecular composition and microarchitecture may vary between anatomical locations as a result of the local mechanical loading environment. No comprehensive comparison of composition and microarchitecture of trabecular bone in different anatomical locations has been conducted. Therefore, the objective of this study was to compare the molecular composition and microarchitecture, evaluated with Fourier transform infrared (FTIR) microspectroscopy and micro-computed tomography (mu CT), respectively, in the femoral neck, greater trochanter and calcaneus of human cadavers. Specimens were harvested from 20 male human cadavers (aged 17-82 years) with no known metabolic bone diseases. Significant differences were found in composition and microarchitecture of trabecular bone between the anatomical locations. Compositional differences were primarily observed between the calcaneus and the proximal femur sites. Mineralization was higher in the greater trochanter than in the calcaneus (+2%, p<0.05) and crystallinity was lowest in the calcaneus (-24%, p<0.05 as compared to the femoral neck). Variation in the composition of trabecular bone within different parts of the proximal femur was only minor. Collagen maturity was significantly lower in greater trochanter than in femoral neck (-8%, p<0.01) and calcaneus (-5%, p<0.05). The greater trochanter possessed a less dense trabecular bone microarchitecture compared to femoral neck or calcaneus. Age related changes were mainly found in the greater trochanter. Significant correlations were found between the composition and microarchitecture of trabecular bone in the greater trochanter and calcaneus, indicating that both composition and microarchitecture alter similarly. This study provides new information about composition and microarchitecture of trabecular bone in different anatomical locations and their alterations with age with respect to the anatomical loading environments. (C) 2013 Elsevier Inc. All rights reserved.
  •  
4.
  • Turunen, Mikael J, et al. (författare)
  • Evaluation of composition and mineral structure of callus tissue in rat femoral fracture.
  • 2014
  • Ingår i: Journal of Biomedical Optics. - 1083-3668. ; 19:2
  • Tidskriftsartikel (refereegranskat)abstract
    • ABSTRACT. Callus formation is a critical step for successful fracture healing. Little is known about the molecular composition and mineral structure of the newly formed tissue in the callus. The aim was to evaluate the feasibility of small angle x-ray scattering (SAXS) to assess mineral structure of callus and cortical bone and if it could provide complementary information with the compositional analyses from Fourier transform infrared (FTIR) microspectroscopy. Femurs of 12 male Sprague-Dawley rats at 9 weeks of age were fractured and fixed with an intramedullary 1.1 mm K-wire. Fractures were treated with the combinations of bone morphogenetic protein-7 and/or zoledronate. Rats were sacrificed after 6 weeks and both femurs were prepared for FTIR and SAXS analysis. Significant differences were found in the molecular composition and mineral structure between the fracture callus, fracture cortex, and control cortex. The degree of mineralization, collagen maturity, and degree of orientation of the mineral plates were lower in the callus tissue than in the cortices. The results indicate the feasibility of SAXS in the investigation of mineral structure of bone fracture callus and provide complementary information with the composition analyzed with FTIR. Moreover, this study contributes to the limited FTIR and SAXS data in the field.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy