SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Justin Bergmann) srt2:(2022)"

Sökning: WFRF:(Justin Bergmann) > (2022)

  • Resultat 1-5 av 5
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Bergmann, Justin, et al. (författare)
  • Combining crystallography with quantum mechanics
  • 2022
  • Ingår i: Current Opinion in Structural Biology. - : Elsevier BV. - 0959-440X. ; 72, s. 18-26
  • Forskningsöversikt (refereegranskat)abstract
    • In standard crystallographic refinement of biomacromolecules, the crystallographic raw data are supplemented by empirical restraints that ensure that the structure makes chemical sense. These restraints are typically accurate for amino acids and nucleic acids, but less so for cofactors, substrates, inhibitors, ligands and metal sites. In quantum refinement, this potential is replaced by more accurate quantum mechanical (QM) calculations. Several implementations have been presented, differing in the level of QM and whether it is used for the entire structure or only for a site of particular interest. It has been shown that the method can improve and correct errors in crystal structures and that it can be used to determine protonation and tautomeric states of various ligands and to decide what is really seen in the structure by refining different interpretations and using standard crystallographic and QM quality measures to decide which fits the structure best.
  •  
2.
  • Bergmann, Justin (författare)
  • Computational protein crystallography : How to get the most out of your data
  • 2022
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • It is important to obtain accurate three dimensional structures of molecules and proteins to understand and predict their function and behaviour. X-ray crystallography is the major technique to determine three dimensional structures of proteins. Although there have been major improvements on the experimental side in determining crystallographic data, only small progress has been made on the computational side to get a correct model andinterpretation of this data.In small-molecule crystallography, some of the shortcomings in the model have already been overcome, but in protein crystallography they still remain. Therefore, we have adapted the Hirshfeld atom refinement from small-molecule crystallography to make it available also to protein crystallography. This enables improved modelling of high-resolution protein data. To achieve this goal, we combined the molecular fractionation with conjugate caps approach with the Hirshfeld atom refinement. We call this combined method fragHAR. With fragHAR, we could perform the first Hirshfeld atom refinement of a metalloprotein.Furthermore, we improved and applied the quantum refinement method, which employs quantum mechanics calculations to obtain a chemically and physically correct model for all parts of the protein, especially the active site. With quantum refinement, it is possible to distinguish between different interpretations of the structure, e.g. the elemental composition or the protonation state, even from medium-resolution crystallographic data. In this thesis, quantum refinement was improved for highly-charged systems by applying a continuum-solvent description of the surroundings in the quantum mechanics calculation. Furthermore, quantum refinement was applied to settle the nature of the unusual bidentate ligand in V-nitrogenase and the protonation state of the MoFe cluster in Mo-nitrogenase when inhibited by CO. For a recent structure of Mo-nitrogenase, we showed that there is no experimental support for the suggestion that N 2 is bound to the MoFe-cluster and presented a more likely model. We have also identified the most probable protonation states of the active site in acetylcholinesterase before and after inhibition by nerve agents. Finally, for triosephosphate isomerase we used a joint X-ray and neutron quantum refinement to investigate the hydrogen bond between an inhibitor and Lys-13.
  •  
3.
  • Cirri, Damiano, et al. (författare)
  • Computationally enhanced X-ray diffraction analysis of a gold(III) complex interacting with the human telomeric DNA G-quadruplex. Unravelling non-unique ligand positioning
  • 2022
  • Ingår i: International Journal of Biological Macromolecules. - : Elsevier BV. - 0141-8130. ; 211, s. 506-513
  • Tidskriftsartikel (refereegranskat)abstract
    • The crystal structure of the human telomeric DNA Tel24 G-quadruplex (Tel24 = TAG3(T2AG3)3T) in complex with the novel [AuL] species (with L = 2,4,6-tris(2-pyrimidyl)-1,3,5-triazine - TPymT-α) was solved by a novel joint molecular mechanical (MM)/quantum mechanical (QM) innovative approach. The quantum-refinement crystallographic method (crystallographic refinement enhanced with quantum mechanical calculation) was adapted to treat the [AuL]/G-quadruplex structure, where each gold complex in the binding site was found spread over four equally occupied positions. The four positions were first determined by docking restrained to the crystallographically determined metal ions' coordinates. Then, the quantum refinement method was used to resolve the poorly defined density around the ligands and improve the crystallographic determination, revealing that the binding preferences of this metallodrug toward Tel24 G-quadruplex arise from a combined effect of pyrimidine stacking, metal–guanine interactions and charge–charge neutralizing action of the π-acid triazine. The occurrence of interaction in solution with the Tel24 G-quadruplex DNA was further proved through DNA melting experiments, which showed a slight destabilisation of the quadruplex upon adduct formation.
  •  
4.
  • Jafari, Sonia, et al. (författare)
  • Benchmark Study of Redox Potential Calculations for Iron-Sulfur Clusters in Proteins
  • 2022
  • Ingår i: Inorganic Chemistry. - : American Chemical Society (ACS). - 0020-1669 .- 1520-510X. ; 61:16, s. 5991-6007
  • Tidskriftsartikel (refereegranskat)abstract
    • Redox potentials have been calculated for 12 different iron-sulfur sites of 6 different types with 1-4 iron ions. Structures were optimized with combined quantum mechanical and molecular mechanical (QM/MM) methods, and the redox potentials were calculated using the QM/MM energies, single-point QM methods in a continuum solvent or by QM/MM thermodynamic cycle perturbations. We show that the best results are obtained with a large QM system (∼300 atoms, but a smaller QM system, ∼150 atoms, can be used for the QM/MM geometry optimization) and a large value of the dielectric constant (80). For absolute redox potentials, the B3LYP density functional method gives better results than TPSS, and the results are improved with a larger basis set. However, for relative redox potentials, the opposite is true. The results are insensitive to the force field (charges of the surroundings) used for the QM/MM calculations or whether the protein and solvent outside the QM system are relaxed or kept fixed at the crystal structure. With the best approach for relative potentials, mean absolute and maximum deviations of 0.17 and 0.44 V, respectively, are obtained after removing a systematic error of -0.55 V. Such an approach can be used to identify the correct oxidation states involved in a certain redox reaction.
  •  
5.
  • The Seventeenth Data Release of the Sloan Digital Sky Surveys : Complete Release of MaNGA, MaStar, and APOGEE-2 Data
  • 2022
  • Ingår i: Astrophysical Journal Supplement Series. - : Institute of Physics (IOP). - 0067-0049 .- 1538-4365. ; 259:2
  • Tidskriftsartikel (refereegranskat)abstract
    • This paper documents the seventeenth data release (DR17) from the Sloan Digital Sky Surveys; the fifth and final release from the fourth phase (SDSS-IV). DR17 contains the complete release of the Mapping Nearby Galaxies at Apache Point Observatory (MaNGA) survey, which reached its goal of surveying over 10,000 nearby galaxies. The complete release of the MaNGA Stellar Library accompanies this data, providing observations of almost 30,000 stars through the MaNGA instrument during bright time. DR17 also contains the complete release of the Apache Point Observatory Galactic Evolution Experiment 2 survey that publicly releases infrared spectra of over 650,000 stars. The main sample from the Extended Baryon Oscillation Spectroscopic Survey (eBOSS), as well as the subsurvey Time Domain Spectroscopic Survey data were fully released in DR16. New single-fiber optical spectroscopy released in DR17 is from the SPectroscipic IDentification of ERosita Survey subsurvey and the eBOSS-RM program. Along with the primary data sets, DR17 includes 25 new or updated value-added catalogs. This paper concludes the release of SDSS-IV survey data. SDSS continues into its fifth phase with observations already underway for the Milky Way Mapper, Local Volume Mapper, and Black Hole Mapper surveys.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-5 av 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy