SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Kang Min Sung) srt2:(2020-2024)"

Sökning: WFRF:(Kang Min Sung) > (2020-2024)

  • Resultat 1-12 av 12
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Kim, Min-Jeong, et al. (författare)
  • Independent enhancement of the in-plane Seebeck effect in 2D PtSe2/PtSe2 homostructures via a facile interface tuning method
  • 2024
  • Ingår i: Acta Materialia. - : Elsevier. - 1359-6454 .- 1873-2453. ; 268
  • Tidskriftsartikel (refereegranskat)abstract
    • Atomically thin two-dimensional (2D) transition-metal dichalcogenide (TMDC) films have emerged as promising semiconducting materials for use in thermoelectric (TE) applications. However, the utilization of such materials remains challenging owing to the relatively high intrinsic resistance as the size of the TMDC thin films increases to the centimeter scale. These 2D TMDC films can also form vertically stacked homo- or heterostructures at large interfaces with other 2D TMDC films, resulting in unique TE properties at room temperature. This article reports on the in-plane TE properties when the interfaces formed within a PtSe2/PtSe2 (3 nm/3 nm) homostructure are modulated as a function of O2 plasma treatment time. The results show enhanced Seebeck coefficients compared with that of the single-layer PtSe2 with the same thickness. The independent enhancement in the Seebeck coefficient while keeping the electrical conductivity leads to a substantial increase in the power factor. Such extra Seebeck voltage in 2D PtSe2/PtSe2 homostructures is mainly as a result of momentum exchange by charge carriers caused by the temperature gradient in the vertical direction, which occurs in-plane Seebeck coefficient measurements, at the interface between the PtSe2 layers in the in-plane temperature gradient along the samples. These results resemble the characteristics of the phonon drag effect at low temperatures, which can independently increase the Seebeck coefficient at room temperature.
  •  
2.
  • Kim, Min-Jeong, et al. (författare)
  • Intrinsic Seebeck coefficients of 2D polycrystalline PtSe2 semiconducting films through two-step annealing
  • 2023
  • Ingår i: Journal of Materials Chemistry A. - : Royal Society of Chemistry. - 2050-7488 .- 2050-7496. ; 11:11, s. 5714-5724
  • Tidskriftsartikel (refereegranskat)abstract
    • Because of the high contact resistance between a metal and a film, evaluating the intrinsic Seebeck coefficient of large-area two-dimensional (2D) semiconducting films with high-resistance is challenging. Here, we report a simple scheme to measure the large-area Seebeck coefficients of 2D polycrystalline platinum diselenide (PtSe2) thin films, whose electrical resistance (>2 M omega) is too high to measure the thermoelectric (TE) properties, by thermal annealing. As-prepared PtSe2 thin films deposited on sapphire substrates and treated by a two-step thermal annealing process at 574 K exhibited an intrinsic Seebeck coefficient > similar to 160 mu V K-1, which is 400% higher than that of the single-crystalline PtSe2 bulk, under a temperature gradient of up to 5 K along the samples. In addition, we confirm that the in-plane Seebeck coefficient of the two-step annealed samples was independent of the metal electrode. In addition, the role of thermal annealing in intrinsically-high-resistance 2D PtSe2 semiconducting films based on the atomic-scale crystallographic characteristics of these films and the measured contact resistance between the metal and PtSe2 layer is further discussed. Our finding represents an important achievement in understanding and measuring the Seebeck effect of high-TE-performance 2D layered transition metal dichalcogenide materials.
  •  
3.
  • Choi, Jae Won, et al. (författare)
  • Interface-driven seebeck effect in two-dimensional trilayer-stacked PtTe2/MoS2/MoS2 heterostructures via electron-electron interactions
  • 2023
  • Ingår i: Nano Energy. - : Elsevier. - 2211-2855 .- 2211-3282. ; 115
  • Tidskriftsartikel (refereegranskat)abstract
    • Two-dimensional (2D) platinum telluride (PtTe2), which is one of the promising metallic transition metal dichalcogenides, has been proven as an essential candidate for electronic devices, magnetic devices, type-II Dirac fermions, topological superconductors, and other optoelectronic applications. However, the formation and thermal transport as important thermoelectric (TE) device applications have not been realized in large-area 2D PtTe2 films due to their semi-metallic properties. Here, we report an innovative approach to enhance the in-plane TE power factors by piling the metallic PtTe2 films on high-resistance (> 10 MO) intrinsic MoS2 films to form bilayer-PtTe2/MoS2 (5 nm/7 nm)//sapphire and trilayer-PtTe2/MoS2/MoS2 (5 nm/7 nm/7 nm)//sapphire heterostructures via wet-transfer stacking method. Such approaches can be achieved by utilizing 2D/2D heterostructure to increase the electron effective mass due to the strong electron-electron interaction at interface under temperature gradient along the samples and ultimately increase Seebeck coefficients via interface-driven Seebeck effect along with a metallic high-conductivity top-PtTe2 films. The trilayer-stacked PtTe2/MoS2/MoS2 heterostructures exhibit an extremely high Seebeck coefficient of 21.6 mu V/K and power factor of similar to 0.2 mW/m.K-2, which are 231 % and similar to 727 %, higher than those of the metallic 5-nm-thick single PtTe2 film on the sapphire substrate, respectively. Our new physics and observation can pave the way toward an effective strategy for understating 2D/2D TMDC heterostructure materials for high Fig.-of-merit TE energy harvesting devices.
  •  
4.
  • Kim, Yun-Ho, et al. (författare)
  • Barrier-free semimetallic PtSe2 contact formation in two-dimensional PtSe2/PtSe2 homostructure for high-performance field-effect transistors
  • 2023
  • Ingår i: Applied Surface Science. - : ELSEVIER. - 0169-4332 .- 1873-5584. ; 638
  • Tidskriftsartikel (refereegranskat)abstract
    • The search for low-resistance metal contacts on two-dimensional (2D) layered transition metal dichalcogenide (TMDC) materials for high-performance electronic devices remains challenging owing to the lack of interfacial bonding on the surface and a strong Fermi-level pinning effect. In this study, we demonstrate a high-performance 2D large-area homostructured PtSe2/PtSe2 field-effect transistor (FET) by introducing a Schottky-barrier-free and semimetallic PtSe2 film (top layer) as an ohmic contact to semiconducting 2D PtSe2 films (bottom layer) via the wet-transfer method. We successfully improved the current on/off ratio of homostructured 2D/2D PtSe2/PtSe2 FET by more than approximately twofold increase compared to the PtSe2 FET with Pt contacts owing to the barrier-free homojunction PtSe2 layer. Our finding represents a significant achievement in obtaining highperformance electronic devices with barrier-free contacts on homostructured PtSe2 FETs and paves the way toward a promising strategy for wafer-scale 2D TMDC electronic devices.
  •  
5.
  • Choi, Jae Won, et al. (författare)
  • Observation of a Strong Decoupling Phenomenon in Pt/Si Hybrid Structures for In-Plane Thermoelectric Properties
  • 2022
  • Ingår i: The Journal of Physical Chemistry C. - : American Chemical Society (ACS). - 1932-7447 .- 1932-7455. ; 126:40, s. 17283-17290
  • Tidskriftsartikel (refereegranskat)abstract
    • The performance of thermoelectric (TE) materials is limited by the intrinsic coupling of the Seebeck coefficient and the electrical conductivity such that an increase in one leads to a decrease in the other with respect to the carrier concentration. This coupling makes it particularly difficult to enhance the TE power factor in TE materials. In this study, we added a Pt top layer over a silicon wafer, forming a hybridized Pt/Si structure to drive a strong decoupling of the Seebeck coefficient and electrical conductivity. The results show that the electrical resistance in the Pt/Si hybrid structure decreased by ∼94 times compared to that of a single-layer lightly doped Si substrate at 300 K, while the Seebeck coefficient in the hybrid structure decreased slightly compared to that of the single layer. The remarkably high TE performance of the Pt/Si hybrid structure is brought about by the hybridization of the intrinsic high-conductivity Pt layer and the high-Seebeck coefficient Si substrate. In addition, we demonstrate that this novel and effective decoupling method enables the assessment of the in-plane intrinsic Seebeck coefficient of a lightly doped Si wafer, which typically has an electrical resistance that is extremely high to measure the Seebeck coefficient even with a high-resolution voltmeter. These results represent a significant advancement in the understanding of electrical transport in TE materials, which will invigorate further research on Si-based devices for realizing large-area watt-scale TE generation at room temperature.
  •  
6.
  • Kang, Min-Sung, et al. (författare)
  • Enhanced Transverse Seebeck Coefficients in 2D/2D PtSe2/MoS2 Heterostructures Using Wet-Transfer Stacking
  • 2022
  • Ingår i: ACS Applied Materials and Interfaces. - : American Chemical Society (ACS). - 1944-8244 .- 1944-8252. ; 14:46, s. 51881-51888
  • Tidskriftsartikel (refereegranskat)abstract
    • It is very challenging to estimate thermoelectric (TE) properties when applying millimeter-scale two-dimensional (2D) transition metal dichalcogenide (TMDC) materials to TE device applications, particularly their Seebeck coefficient due to their high intrinsic electrical resistance. This paper proposes an innovative approach to measure large transverse (i.e., in-plane) Seebeck coefficients for 2D TMDC materials by placing a low resistance (LR) semimetallic PtSe2 film on high-resistance (HR) semiconducting MoS2 (>10 M omega), whose internal resistance is too high to measure the Seebeck coefficient, forming a heterojunction structure using wet-transfer stacking. The vertically stacked LRPtSe2 (3 nm)/HR-MoS2 (12 nm) heterostructure film exhibits a high Seebeck coefficient > 190 mu V/K up to 5 K temperature difference. This unusual behavior can be explained by an additional Seebeck effect induced at the interface between the LR-2D/HR2D heterostructure. The proposed stacked LR-PtSe2/HR-MoS2 heterostructure film offers promising phenomena 2D/2D materials that enable innovative TE device applications.
  •  
7.
  • Kang, Sung-Yoon, et al. (författare)
  • Open The association between specific IgE antibodies to component allergens and allergic symptoms on dog and cat exposure among Korean pet exhibition participants
  • 2022
  • Ingår i: World Allergy Organization Journal. - : Elsevier. - 1939-4551. ; 15:11
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Component resolved diagnostics (CRD) in dog and cat allergy is not sufficiently investigated, especially regarding new components such as Can f 4, Can f 6, and Fel d 7. The purpose of this study is to evaluate the potential role of CRD with new components in predicting allergic symptoms on dog and cat exposure.Methods: Among 552 Korean adults who participated in a pet exhibition and completed questionnaires regarding exposure to dog or cat and allergic symptoms, 522 were venipunctured for measurement of IgE and IgG4 antibody concentration against dog and cat dander extract and underwent skin prick test (SPT). In 238 individuals who were sensitized for both dog and cat dander extract, the dog IgE components (Can f 1-6) and the cat components (Fel d 1/2/4/7) were analyzed.Results: An increasing number of sensitizing components was associated with the likelihood of having any allergic symptoms (P < 0.001 for dog and P < 0.01 for cat), and those of asthma (P < 0.01 for dog and P < 0.05 for cat) and rhinoconjunctivitis (P < 0.001 for dog and P < 0.05 for cat). Pairwise correlation of IgE levels was r = 0.56 (P < 0.001) for Can f 6 and Fel d 4, r = 0.74 (P < 0.001) for Can f 1 and Fel d 7 and r = 0.84 (P < 0.001) for Can f 3 and Fel d 2.Conclusions: Polysensitization to dog and cat allergen components is associated with high likelihood of having allergic symptoms during exposure to dogs and cats. Cross-reactivity between dog and cat allergen components is also identified. CRD has a potential in fine-tuning prediction for allergic symptoms on dog and cat exposure.
  •  
8.
  • Lee, Won-Yong, et al. (författare)
  • Abnormal Seebeck Effect in Vertically Stacked 2D/2D PtSe2/PtSe2 Homostructure
  • 2022
  • Ingår i: Advanced Science. - : Wiley-VCH Verlagsgesellschaft. - 2198-3844. ; 9:36
  • Tidskriftsartikel (refereegranskat)abstract
    • When a thermoelectric (TE) material is deposited with a secondary TE material, the total Seebeck coefficient of the stacked layer is generally represented by a parallel conductor model. Accordingly, when TE material layers of the same thickness are stacked vertically, the total Seebeck coefficient in the transverse direction may change in a single layer. Here, an abnormal Seebeck effect in a stacked two-dimensional (2D) PtSe2/PtSe2 homostructure film, i.e., an extra in-plane Seebeck voltage is produced by wet-transfer stacking at the interface between the PtSe2 layers under a transverse temperature gradient is reported. This abnormal Seebeck effect is referred to as the interfacial Seebeck effect in stacked PtSe2/PtSe2 homostructures. This effect is attributed to the carrier-interface interaction, and has independent characteristics in relation to carrier concentration. It is confirmed that the in-plane Seebeck coefficient increases as the number of stacked PtSe2 layers increase and observed a high Seebeck coefficient exceeding ≈188 µV K−1 at 300 K in a four-layer-stacked PtSe2/PtSe2 homostructure.
  •  
9.
  • Lee, Won-Yong, et al. (författare)
  • Alternatingly Stacked Low- and High-Resistance PtSe2/PtSe2 Homostructures Boost Thermoelectric Power Factors
  • 2023
  • Ingår i: Advanced Electronic Materials. - : John Wiley & Sons. - 2199-160X. ; 9:8
  • Tidskriftsartikel (refereegranskat)abstract
    • 2D transition-metal dichalcogenide (TMDC) materials are promising candidates with excellent thermoelectric (TE) properties owing to their low dimensionality in electronic and phonon transport. However, the considerable coupling of the Seebeck coefficient and electrical conductivity in such TE materials eventually results in the limit of the TE power factor increase, which severely hinders potential TE device applications. Herein, an alternative approach is demonstrated for breaking the strong coupling between the Seebeck coefficient and electrical conductivity in single TE materials by adopting a novel stacked PtSe2/PtSe2 homostructure. By alternately piling low-resistance (LR) PtSe2 (3 nm) onto high-resistance (HR) PtSe2 (2 nm) as one unit, the Seebeck coefficient and electrical conductivity of such stacked homostructures can be greatly enhanced with slightly improved electrical conductivity, ultimately resulting in a TE power factor in three-unit-stacked homostructures that is approximate to 1,648% higher than that of a single PtSe2 (15 nm) layer with the same thickness. This enhancement is attributed to an independent increase in the Seebeck coefficient, which depends on the interface among the LR and HR PtSe2 layers. The findings pave the way for a method that, unlike power factor optimization in conventional thermoelectric materials, can only utilize the Seebeck coefficient and electrical conductivity of each layer in a stacked homostructure.
  •  
10.
  • Biancari, Fausto, et al. (författare)
  • Central versus Peripheral Postcardiotomy Veno-Arterial Extracorporeal Membrane Oxygenation : Systematic Review and Individual Patient Data Meta-Analysis
  • 2022
  • Ingår i: Journal of Clinical Medicine. - : MDPI AG. - 2077-0383. ; 11:24
  • Forskningsöversikt (refereegranskat)abstract
    • Background: It is unclear whether peripheral arterial cannulation is superior to central arterial cannulation for postcardiotomy veno-arterial extracorporeal membrane oxygenation (VA-ECMO). Methods: A systematic review was conducted using PubMed, Scopus, and Google Scholar to identify studies on postcardiotomy VA-ECMO for the present individual patient data (IPD) meta-analysis. Analysis was performed according to the intention-to-treat principle. Results: The investigators of 10 studies agreed to participate in the present IPD meta-analysis. Overall, 1269 patients were included in the analysis. Crude rates of in-hospital mortality after central versus peripheral arterial cannulation for VA-ECMO were 70.7% vs. 63.7%, respectively (adjusted OR 1.38, 95% CI 1.08–1.75). Propensity score matching yielded 538 pairs of patients with balanced baseline characteristics and operative variables. Among these matched cohorts, central arterial cannulation VA-ECMO was associated with significantly higher in-hospital mortality compared to peripheral arterial cannulation VA-ECMO (64.5% vs. 70.8%, p = 0.027). These findings were confirmed by aggregate data meta-analysis, which showed that central arterial cannulation was associated with an increased risk of in-hospital mortality compared to peripheral arterial cannulation (OR 1.35, 95% CI 1.04–1.76, I2 21%). Conclusions: Among patients requiring postcardiotomy VA-ECMO, central arterial cannulation was associated with an increased risk of in-hospital mortality compared to peripheral arterial cannulation. This increased risk is of limited magnitude, and further studies are needed to confirm the present findings and to identify the mechanisms underlying the potential beneficial effects of peripheral VA-ECMO.
  •  
11.
  • Biancari, Fausto, et al. (författare)
  • Inter-institutional analysis of the outcome after postcardiotomy veno-arterial extracorporeal membrane oxygenation
  • 2024
  • Ingår i: International Journal of Artificial Organs. - 0391-3988. ; 47:1, s. 25-34
  • Tidskriftsartikel (refereegranskat)abstract
    • Introduction: Patients requiring postcardiotomy veno-arterial extracorporeal membrane oxygenation (V-A-ECMO) have a high risk of early mortality. In this analysis, we evaluated whether any interinstitutional difference exists in the results of postcardiotomy V-A-ECMO. Methods: Studies on postcardiotomy V-A-ECMO were identified through a systematic review for individual patient data (IPD) meta-analysis. Analysis of interinstitutional results was performed using direct standardization, estimation of observed/expected in-hospital mortality ratio and propensity score matching. Results: Systematic review of the literature yielded 31 studies. Data from 10 studies on 1269 patients treated at 25 hospitals were available for the present analysis. In-hospital mortality was 66.7%. The relative risk of in-hospital mortality was significantly higher in six hospitals. Observed versus expected in-hospital mortality ratio showed that four hospitals were outliers with significantly increased mortality rates, and one hospital had significantly lower in-hospital mortality rate. Participating hospitals were classified as underperforming and overperforming hospitals if their observed/expected in-hospital mortality was higher or lower than 1.0, respectively. Among 395 propensity score matched pairs, the overperforming hospitals had significantly lower in-hospital mortality (60.3% vs 71.4%, p = 0.001) than underperforming hospitals. Low annual volume of postcardiotomy V-A-ECMO tended to be predictive of poor outcome only when adjusted for patients’ risk profile. Conclusions: In-hospital mortality after postcardiotomy V-A-ECMO differed significantly between participating hospitals. These findings suggest that in many centers there is room for improvement of the results of postcardiotomy V-A-ECMO.
  •  
12.
  • Li, Shuwei, et al. (författare)
  • Electron uptake from solid electrodes promotes the more efficient conversion of CO 2 to polyhydroxybutyrate by using Rhodobacter sphaeroides
  • 2023
  • Ingår i: Chemical Engineering Journal. - 1385-8947. ; 469
  • Tidskriftsartikel (refereegranskat)abstract
    • Microbial electrosynthesis (MES) is a promising strategy for the conversion of CO2 to useful chemicals. Nevertheless, the characteristics of electrode-associated cells in MES and their metabolic pathway regulation in CO2 fixation have not been elucidated. This study examined the electrode-driven polyhydroxybutyrate (PHB) production from CO2 in Rhodobacter sphaeroides. The electron uptake and regulation of the metabolic pathways differed in electrode-associated and suspended R. sphaeroides. The electrode-associated cells produced PHB at concentrations up to 23.50 ± 2.8% of the dry cell weight (DCW), whereas the suspended cells grew faster but with a lower cellular PHB content. Gene expression analyses showed that phaA expression was upregulated in electrode-associated R. sphaeroides, whereas phaB expression was downregulated in suspended cells. The electrode-associated cells expressed unconventional CO2 fixation enzymes, such as isocitrate dehydrogenase and formate dehydrogenase, with more PHB synthesis. These results show that CO2 can be upcycled to polymeric substances and provide novel insights into the genetic regulation of electrode-associated cells in MES.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-12 av 12

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy