SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Kapitanova Olesya O.) "

Sökning: WFRF:(Kapitanova Olesya O.)

  • Resultat 1-11 av 11
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Chen, Yaqi, et al. (författare)
  • Two Birds with One Stone: Using Indium Oxide Surficial Modification to Tune Inner Helmholtz Plane and Regulate Nucleation for Dendrite-free Lithium Anode
  • 2022
  • Ingår i: Small Methods. - : Wiley. - 2366-9608. ; 6:5
  • Tidskriftsartikel (refereegranskat)abstract
    • Lithium metal has been considered as the most promising anode material due to its distinguished specific capacity of 3860 mAh g–1 and the lowest reduction potential of -3.04 V versus the Standard Hydrogen Electrode. However, the practicalization of Li-metal batteries (LMBs) is still challenged by the dendritic growth of Li during cycling, which is governed by the surface properties of the electrodepositing substrate. Herein, a surface modification with indium oxide on the copper current collector via magnetron sputtering, which can be spontaneously lithiated to form a composite of lithium indium oxide and Li-In alloy, is proposed. Thus, the growth of Li dendrites is effectively suppressed via regulating the inner Helmholtz plane modified with LiInO2 to foster the desolvation of Li-ion and induce the nucleation of Li-metal in two-dimensions through electro-crystallization with Li-In alloy. Using the In2O3 modification, the Li-metal anode exhibits outstanding cyclic stability, and LMBs with lithium cobalt oxide cathode present excellent capacity retention (above 80% over 600 cycles). Enlightening, the scalable magnetron sputtering method reported here paves a novel way to accelerate the practical application of the Li anode in LMBs to pursue higher energy density.
  •  
2.
  • Jiao, Xingxing, et al. (författare)
  • Crumpled Nitrogen-Doped Graphene-Wrapped Phosphorus Composite as a Promising Anode for Lithium-Ion Batteries
  • 2019
  • Ingår i: ACS Applied Materials & Interfaces. - : American Chemical Society (ACS). - 1944-8252 .- 1944-8244. ; 11:34, s. 30858-30864
  • Tidskriftsartikel (refereegranskat)abstract
    • Red phosphorus (P) has recently gained wide attention because of the high theoretical capacity of 2596 mA h/g, which has been regarded as promising anode material for lithium-ion batteries (LIBs). However, the actual application of red P in LIBs is hampered by the huge expansion of volume and low electronic conductivity. Herein, we design a kind of red phosphorus/crumpled nitrogen-doped graphene (P/CNG) nanocomposites with high capacity density and great rate performance as anode material for LIBs. This anode material was rationally fabricated through the scalable ball-milling method. The nanocomposite structure of P/CNG improves the electron conductivity and alleviates volume change of raw red P because of the three-dimension (3D) framework, massive defects and active sites of CNG sheets. As expected, the P/CNG composite shows excellent electrochemical performances, including high capacity (2522.6 mA h/g at 130 mA/g), remarkable rate capability (1340.5 mA h/g at 3900 mA/g), and great cyclability (1470.1 mA h/g at 1300 mA/g for 300 cycles). This work may provide a broad prospect for a great rate performance of P-based anode material for LIBs.
  •  
3.
  • Jiao, Xingxing, et al. (författare)
  • Grain size and grain boundary strength: Dominative role in electro-chemo-mechanical failure of polycrystalline solid-state electrolytes
  • 2024
  • Ingår i: Energy Storage Materials. - 2405-8297. ; 65
  • Tidskriftsartikel (refereegranskat)abstract
    • Solid-state batteries with lithium metal anode have been accepted extensively as the competitive option to fulfill the upping requirement for safe and efficient energy devices. Nevertheless, its wide-ranging application has been impeded by the failure of solid-state electrolyte (SSE) induced by development of lithium (Li) filament. Based on the nature of polycrystalline ceramic SSE with varying grain size and boundary strength, the constitutive equation coupled with electrochemical kinetics was applied to picture the propagation of damage and corresponding disintegration caused by the development of Li filament. Based on the results, we found that the stress generated along with the growth of Li filament spreads away via the opening and sliding of grain boundary. Thus, damage occurs along grain boundaries, of which propagation behavior and damage level are controlled by grain size. Especially, over-refinement and under-refinement of grains of SSE can cause flocculent damage with inordinate damage degree and accelerate the failure time of SSE, respectively. On the other hand, the failure time is powerfully prolongated through strengthening the grain boundary of SSE. Eventually, grain size of 0.2 μm and tensile strength of grain boundary of 0.8-time-of-grain are posted as the threshold to realize the postponed failure of NASICON-based SSE. Inspiringly, electro-chemo-mechanical model in this contribution is generally applicable to other type of ceramic SSE to reveal the failure process and provide the design guideline, fostering the improvement of solid-state batteries.
  •  
4.
  • Jiao, Xingxing, et al. (författare)
  • Morphology evolution of electrodeposited lithium on metal substrates
  • 2023
  • Ingår i: Energy Storage Materials. - 2405-8297. ; 61
  • Tidskriftsartikel (refereegranskat)abstract
    • Lithium (Li) metal is deemed to be the high-energy-density anode material for next generation batteries, but its practical application is impeded by the uneven electrodeposition during charge of battery, which leads to the low Coulombic efficiency and potential safety issue. Here, multiscale modeling is fabricated to understand the morphology evolution of Li during electrodeposition process, from the self-diffusion of Li adatoms on electrode surface, to the nucleation process, and to the formation of Li microstructures, revealing the correlation between final morphology and deposition substrates. Energy batteries and self-diffusion of Li adatom on various substrates (lithium, copper, nickel, magnesium, and silver) result in the different nucleation size, which is calculated by kinetic Monte Carlo simulation based on classical nucleation theory. Formation of Li substructures that are grown from Li nuclei, is revealed by phase field modeling coupled with cellular automaton method. Our results show that larger Li nuclei is obtained under faster self-diffusion of Li adatom, leading to the low aspect ratio of Li substructures and the subsequent morphology evolution of electrodeposited Li. Furthermore, the electrodeposition of Li is strongly regulated by the selection of substrates, giving the practical guideline of anode design in rechargeable Li metal batteries. It is worthy to mention that this method to investigate the electro-crystallization process involving nucleation and growth can be transplanted to the other metallic anode, such as sodium, potassium, zinc, magnesium, calcium and the like.
  •  
5.
  • Liu, Yangyang, et al. (författare)
  • Electro-Chemo-Mechanical Modeling of Artificial Solid Electrolyte Interphase to Enable Uniform Electrodeposition of Lithium Metal Anodes
  • 2022
  • Ingår i: Advanced Energy Materials. - : Wiley. - 1614-6840 .- 1614-6832. ; 12:9
  • Tidskriftsartikel (refereegranskat)abstract
    • Nonuniform electrodeposition of lithium during charging processes is the key issue hindering development of rechargeable Li metal batteries. This deposition process is largely controlled by the solid electrolyte interphase (SEI) on the metal surface and the design of artificial SEIs is an essential pathway to regulate electrodeposition of Li. In this work, an electro-chemo-mechanical model is built and implemented in a phase-field modelling to understand the correlation between the physical properties of artificial SEIs and deposition of Li. The results show that improving ionic conductivity of the SEI above a critical level can mitigate stress concentration and preferred deposition of Li. In addition, the mechanical strength of the SEI is found to also mitigate non-uniform deposition and influence electrochemical kinetics, with a Young's modulus around 4.0 GPa being a threshold value for even deposition of Li. By comparison of the results to experimental results for artificial SEIs it is clear that the most important direction for future work is to improve the ionic conductivity without compromising mechanical strength. In addition, the findings and methodology presented here not only provide detailed guidelines for design of artificial SEI on Li-metal anodes but also pave the way to explore strategies for regulating deposition of other metal anodes.
  •  
6.
  • Liu, Yangyang, et al. (författare)
  • Insight into the Critical Role of Exchange Current Density on Electrodeposition Behavior of Lithium Metal
  • 2021
  • Ingår i: Advanced Science. - : Wiley. - 2198-3844 .- 2198-3844. ; 8:5
  • Tidskriftsartikel (refereegranskat)abstract
    • Due to an ultrahigh theoretical specific capacity of 3860 mAh g−1, lithium (Li) is regarded as the ultimate anode for high-energy-density batteries. However, the practical application of Li metal anode is hindered by safety concerns and low Coulombic efficiency both of which are resulted fromunavoidable dendrite growth during electrodeposition. This study focuses on a critical parameter for electrodeposition, the exchange current density, which has attracted only little attention in research on Li metal batteries. A phase-field model is presented to show the effect of exchange current density on electrodeposition behavior of Li. The results show that a uniform distribution of cathodic current density, hence uniform electrodeposition, on electrode is obtained with lower exchange current density. Furthermore, it is demonstrated that lower exchange current density contributes to form a larger critical radius of nucleation in the initial electrocrystallization that results in a dense deposition of Li, which is a foundation for improved Coulombic efficiency and dendrite-free morphology. The findings not only pave the way to practical rechargeable Li metal batteries but can also be translated to the design of stable metal anodes, e.g., for sodium (Na), magnesium (Mg), and zinc (Zn) batteries.
  •  
7.
  • Liu, Yangyang, et al. (författare)
  • Role of Interfacial Defects on Electro–Chemo–Mechanical Failure of Solid-State Electrolyte
  • 2023
  • Ingår i: Advanced Materials. - 0935-9648 .- 1521-4095. ; 35:24
  • Tidskriftsartikel (refereegranskat)abstract
    • High-stress field generated by electroplating of lithium (Li) in pre-existing defects is the main reason for mechanical failure of solid-state electrolyte because it drives crack propagation in electrolyte, followed by Li filament growth inside and even internal short-circuit if the filament reaches another electrode. To understand the role of interfacial defects on mechanical failure of solid-state electrolyte, an electro–chemo–mechanical model is built to visualize distribution of stress, relative damage, and crack formation during electrochemical plating of Li in defects. Geometry of interfacial defect is found as dominating factor for concentration of local stress field while semi-sphere defect delivers less accumulation of damage at initial stage and the longest failure time for disintegration of electrolyte. Aspect ratio, as a key geometric parameter of defect, is investigated to reveal its impact on failure of electrolyte. Pyramidic defect with low aspect ratio of 0.2–0.5 shows branched region of damage near interface, probably causing surface pulverization of solid-state electrolyte, whereas high aspect ratio over 3.0 will trigger accumulation of damage in bulk electrolyte. The correction between interfacial defect and electro–chemo–mechanical failure of solid-state electrolyte is expected to provide insightful guidelines for interface design in high-power-density solid-state Li metal batteries.
  •  
8.
  • Xiong, Shizhao, 1985, et al. (författare)
  • Mechanical Failure of Solid-State Electrolyte Rooted in Synergy of Interfacial and Internal Defects
  • 2023
  • Ingår i: Advanced Energy Materials. - : Wiley. - 1614-6840 .- 1614-6832. ; 13:14
  • Tidskriftsartikel (refereegranskat)abstract
    • The mechanical failure of solid-state electrolytes induced by the growth of the lithium metal anode hinders the development of solid-state Li metal batteries with good safety and high energy density, and thus the understanding of the failure mechanism is of high importance for the application of solid-state lithium-metal batteries. Herein, a modified electro-chemo-mechanical model is built to bridge the dynamic relationship between the mechanical failure of solid-state electrolytes and the electrodeposition of lithium metal. The results, visualize evolution of local stress fields and the corresponding relative damage, and indicate that the generation of damage inside the solid-state electrolyte is rooted in a synergy of interfacial and internal defects. Compression by electrodeposited lithium inside interfacial defects and further transmission of stress inward in the electrolyte causes catastrophic damage, which is determined by the geometry of interfacial defects. Moreover, the internal defects of the solid-state electrolyte from sintering can influence the pathway of damage and work as the inner fountainhead for further damage propagation, and as such, the position and amount of the internal voids exhibit a more competitive role in the mechanical failure of solid-state electrolyte. Thus, the synergetic failure mechanism of solid-state electrolytes raised in this work provides a modeling framework to design effective strategies for state-of-the-art solid-state lithium-metal batteries.
  •  
9.
  • Xu, Xieyu, et al. (författare)
  • Diffusion Limited Current Density: A Watershed in Electrodeposition of Lithium Metal Anode
  • 2022
  • Ingår i: Advanced Energy Materials. - : Wiley. - 1614-6840 .- 1614-6832. ; 12:19
  • Tidskriftsartikel (refereegranskat)abstract
    • Lithium metal is considered to be a promising anode material for high-energy-density rechargeable batteries because of its high theoretical capacity and low reduction potential. Nevertheless, the practical application of Li anodes is challenged by poor cyclic performance and potential safety hazards, which are attributed to non-uniform electrodeposition of Li metal during charging. Herein, diffusion limited current density (DLCD), one of the critical fundamental parameters that govern the electrochemical reaction process, is investigated as the threshold of current density for electrodeposition of Li. The visualization of the concentration field and distribution of Faradic current density reveal how uniform electrodeposition of Li metal anodes can be obtained when the applied current density is below the DLCD of the related electrochemical system. Moreover, the electrodeposition of Li metal within broken solid electrolyte interphases preferentially occurs at the crack spots that are caused by the non-uniform electrodeposition of Li metal. This post-electrodeposition leads to more consumption of active Li when the applied current density is greater than the DLCD. Therefore, lowering the applied current density or increasing the DLCD are proposed as directions for developing advanced strategies to realize uniform electrodeposition of Li metal and stable interfaces, aiming to accelerate the practical application of state-of-the-art Li metal batteries.
  •  
10.
  • Xu, Xieyu, et al. (författare)
  • Electro-Chemo-Mechanical Failure of Solid Electrolytes Induced by Growth of Internal Lithium Filaments
  • 2022
  • Ingår i: Advanced Materials. - : Wiley. - 0935-9648 .- 1521-4095. ; 34:49
  • Tidskriftsartikel (refereegranskat)abstract
    • Growth of lithium (Li) filaments within solid electrolytes, leading to mechanical degradation of the electrolyte and even short circuit of the cell under high current density, is a great barrier to commercialization of solid-state Li-metal batteries. Understanding of this electro-chemo-mechanical phenomenon is hindered by the challenge of tracking local fields inside the solid electrolyte. Here, a multiphysics simulation aiming to investigate evolution of the mechanical failure of the solid electrolyte induced by the internal growth of Li is reported. Visualization of local stress, damage, and crack propagation within the solid electrolyte enables examination of factors dominating the degradation process, including the geometry, number, and size of Li filaments and voids in the electrolyte. Relative damage induced by locally high stress is found to preferentially occur in the region of the electrolyte/Li interface having great fluctuations. A high number density of Li filaments or voids triggers integration of damage and crack networks by enhanced propagation. This model is built on coupling of mechanical and electrochemical processes for internal plating of Li, revealing evolution of multiphysical fields that can barely be captured by the state-of-the-art experimental techniques. Understanding mechanical degradation of solid electrolytes with the presence of Li filaments paves the way to design advanced solid electrolytes for future solid-state Li-metal batteries.
  •  
11.
  • Xu, Xieyu, et al. (författare)
  • Role of Li-Ion Depletion on Electrode Surface: Underlying Mechanism for Electrodeposition Behavior of Lithium Metal Anode
  • 2020
  • Ingår i: Advanced Energy Materials. - : Wiley. - 1614-6840 .- 1614-6832. ; 10:44
  • Tidskriftsartikel (refereegranskat)abstract
    • The application of lithium metal as an anode material for next generation high energy-density batteries has to overcome the major bottleneck that is the seemingly unavoidable growth of Li dendrites caused by non-uniform electrodeposition on the electrode surface. This problem must be addressed by clarifying the detailed mechanism. In this work the mass-transfer of Li-ions is investigated, a key process controlling the electrochemical reaction. By a phase field modeling approach, the Li-ion concentration and the electric fields are visualized to reveal the role of three key experimental parameters, operating temperature, Li-salt concentration in electrolyte, and applied current density, on the microstructure of deposited Li. It is shown that a rapid depletion of Li-ions on electrode surface, induced by, e.g., low operating temperature, diluted electrolyte and a high applied current density, is the underlying driving force for non-uniform electrodeposition of Li. Thus, a viable route to realize a dendrite-free Li plating process would be to mitigate the depletion of Li-ions on the electrode surface. The methodology and results in this work may boost the practical applicability of Li anodes in Li metal batteries and other battery systems using metal anodes.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-11 av 11

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy