SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Karlsson Hanna L.) srt2:(2020-2024)"

Sökning: WFRF:(Karlsson Hanna L.) > (2020-2024)

  • Resultat 1-14 av 14
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  •  
3.
  • Karlsson, Hanna L., et al. (författare)
  • Health hazards of particles in additive manufacturing : a cross-disciplinary study on reactivity, toxicity and occupational exposure to two nickel-based alloys
  • 2023
  • Ingår i: Scientific Reports. - : Springer Nature. - 2045-2322. ; 13:1
  • Tidskriftsartikel (refereegranskat)abstract
    • The increasing use of additive manufacturing (AM) techniques (e.g., 3D-printing) offers many advantages but at the same time presents some challenges. One concern is the possible exposure and health risk related to metal containing particles of different sizes. Using the nickel-based alloys Hastelloy X (HX) and Inconel 939 (IN939) as a case, the aim of this cross-disciplinary study was to increase the understanding on possible health hazards and exposure. This was done by performing in-depth characterization of virgin, reused and condensate powders, testing in vitro toxicity (cytotoxicity, genotoxicity, oxidative stress), and measuring occupational airborne exposure. The results showed limited metal release from both HX and IN939, and slightly different surface composition of reused compared to virgin powders. No or small effects on the cultured lung cells were observed when tested up to 100 µg/mL. Particle background levels in the printing facilities were generally low, but high transient peaks were observed in relation to sieving. Furthermore, during post processing with grinding, high levels of nanoparticles (> 100,000 particles/cm3) were noted. Urine metal levels in AM operators did not exceed biomonitoring action limits. Future studies should focus on understanding the toxicity of the nanoparticles formed during printing and post-processing.
  •  
4.
  • Alijagic, Andi, 1992-, et al. (författare)
  • Characteristics and health risks of the inhalable fraction of metal additive manufacturing powders
  • 2024
  • Ingår i: Nano Select. - : Wiley-VCH Verlagsgesellschaft. - 2688-4011. ; 5:4
  • Tidskriftsartikel (refereegranskat)abstract
    • Metal additive manufacturing (AM) is gaining traction but raises worker health concerns due to micron-sized powders, including fine inhalable particles. This study explored particle and surface characteristics, electrochemical properties, metal release in artificial lysosomal fluid (ALF), and potential toxicity of virgin and sieved virgin Fe-based powders, stainless steel (316L), Fe, and two tooling steels. Virgin particles ranged in size from 1 to 100μm, while sieved particles were within the respirable size range (<5–10μm). Surface oxide composition differed from bulk composition. The Fe powder showed low corrosion resistance and high metal release due to a lack of protective surface oxide. Sieved particles of 316L, Fe, and one tooling steel released more metals into ALF than virgin particles, with the opposite was observed for the other tooling steel. Sieved particles had no notable impact on cell viability or micronuclei formation in human bronchial epithelial cells. Inflammatory response in human macrophages was generally low, except for the Fe powder and one tooling steel, which induced increased interleukin-8 (IL-8/CXCL-8) and monocyte chemoattractant protein-1 (MCP-1/CCL-2) secretion. This study underscores distinctions between virgin and sieved Fe-based powders and suggests relatively low acute toxicity.
  •  
5.
  • Cappellini, Francesca, et al. (författare)
  • Dry Generation of CeO2 Nanoparticles and Deposition onto a Co-Culture of A549 and THP-1 Cells in Air-Liquid Interface-Dosimetry Considerations and Comparison to Submerged Exposure
  • 2020
  • Ingår i: Nanomaterials. - : MDPI AG. - 2079-4991. ; 10:4
  • Tidskriftsartikel (refereegranskat)abstract
    • Relevant in vitro assays that can simulate exposure to nanoparticles (NPs) via inhalation are urgently needed. Presently, the most common method employed is to expose lung cells under submerged conditions, but the cellular responses to NPs under such conditions might differ from those observed at the more physiological air-liquid interface (ALI). The aim of this study was to investigate the cytotoxic and inflammatory potential of CeO2 NPs (NM-212) in a co-culture of A549 lung epithelial cells and differentiated THP-1 cells in both ALI and submerged conditions. Cellular dose was examined quantitatively using inductively coupled plasma mass spectrometry (ICP-MS). The role of serum and LPS-priming for IL-1 beta release was further tested in THP-1 cells in submerged exposure. An aerosol of CeO2 NPs was generated by using the PreciseInhale (R) system, and NPs were deposited on the co-culture using XposeALI (R). No or minor cytotoxicity and no increased release of inflammatory cytokines (IL-1 beta, IL-6, TNF alpha, MCP-1) were observed after exposure of the co-culture in ALI (max 5 mu g/cm(2)) or submerged (max 22 mu g/cm(2)) conditions. In contrast, CeO2 NPs cause clear IL-1 beta release in monocultures of macrophage-like THP-1, independent of the presence of serum and LPS-priming. This study demonstrates a useful approach for comparing effects at various in-vitro conditions.
  •  
6.
  • Elihn, Karine, et al. (författare)
  • Air quality impacts of a large waste fire in Stockholm, Sweden
  • 2023
  • Ingår i: Atmospheric Environment. - : Elsevier BV. - 1352-2310 .- 1873-2844. ; 315
  • Tidskriftsartikel (refereegranskat)abstract
    • Fires in waste facilities are a common occurrence. Since many waste facilities are located adjacent to densely populated areas, these fires could potentially expose large populations to the emitted pollutants. However, at the moment there are only few field studies investigating the impact of waste fire emissions on air quality since the unpredictable nature of these events makes them challenging to capture. This study investigated the impact of a large and persistent un-prescribed fire in a waste storage facility in Stockholm county, Sweden, on the local air quality of two residential areas in close proximity to the fire. In-situ measurements of particulate matter, black carbon and nitrogen oxide concentrations were conducted both during open burning and after the fire was fully covered. In addition, filter samples were collected for offline analysis of organic composition, metal content and toxicity. Strongly increased concentrations of PM10, PM2.5 and black carbon were found during the open burning period, especially when the wind was coming from the direction of the fire. In addition, elevated concentrations of particulate heavy metals and polycyclic aromatic hydrocarbons were observed in the air during the open burning period. These results show that waste fires can have a strong impact on the air quality of nearby residential areas.
  •  
7.
  • Gliga, Anda R., et al. (författare)
  • Silver nanoparticles modulate lipopolysaccharide-triggered Toll-like receptor signaling in immune-competent human cell lines
  • 2020
  • Ingår i: Nanoscale Advances. - : ROYAL SOC CHEMISTRY. - 2516-0230. ; 2:2, s. 648-658
  • Tidskriftsartikel (refereegranskat)abstract
    • Silver (Ag) nanoparticles are commonly used in consumer products due to their antimicrobial properties. Here we studied the impact of Ag nanoparticles on immune responses by using cell lines of monocyte/macrophage and lung epithelial cell origin, respectively. Short-term experiments (24 h) showed that Ag nanoparticles reduced the lipopolysaccharide (LPS)-induced secretion of pro-inflammatory cytokines in THP-1 cells under serum-free conditions. ICP-MS analysis revealed that cellular uptake of Ag was higher under these conditions. Long-term exposure (up to 6 weeks) of BEAS-2B cells to Ag nanoparticles also suppressed pro-inflammatory cytokine production following a brief challenge with LPS. Experiments using reporter cells revealed that Ag nanoparticles as well as AgNO3 inhibited LPS-triggered Toll-like receptor (TLR) signaling. Furthermore, RNA-sequencing of BEAS-2B cells indicated that Ag nanoparticles affected TLR signaling pathways. In conclusion, Ag nanoparticles reduced the secretion of pro-inflammatory cytokines in response to LPS, likely as a result of the release of silver ions leading to an interference with TLR signaling. This could have implications for the use of Ag nanoparticles as antibacterial agents. Further in vivo studies are warranted to study this.
  •  
8.
  • Kobayashi, Yumi, et al. (författare)
  • Life-cycle assessment of yeast-based single-cell protein production with oat processing side-stream
  • 2023
  • Ingår i: Science of the Total Environment. - : Elsevier BV. - 1879-1026 .- 0048-9697. ; 873
  • Tidskriftsartikel (refereegranskat)abstract
    • Production of fish meal and plant-based feed proteins continues to increase to meet the growing demand for seafood, leading to impacts on marine and terrestrial ecosystems. Microbial proteins such as single-cell proteins (SCPs) have been introduced as feed alternatives since they can replace current fish feed ingredients, e.g., soybean, which are associated with negative environmental impacts. Microbial protein production also enables utilization of grain processing side-streams as feedstock sources. This study assesses the environmental impacts of yeast-based SCP using oat side-stream as feedstock (OS-SCP). Life-cycle assessment with a cradle-to-gate approach was used to quantify global warming, freshwater eutrophication, marine eutrophication, terrestrial acidification, land use, and water consumption of OS-SCP production in Finland. Dried and wet side-streams of oat were compared with each other to identify differences in energy consumption and transportation effects. Sensitivity analysis was performed to examine the difference in impacts at various locations and fermentation times. Benchmarking was used to evaluate the environmental impacts of OS-SCP and other feed products, including both conventional and novel protein products. Results highlight the importance of energy sources in quantifying the environmental performance of OS-SCP production. OS-SCP produced with dried side-streams resulted in higher global warming (16.3 %) and water consumption (7.5 %) than OS-SCP produced from wet side-streams, reflecting the energy and water requirements for the drying process. Compared with conventional products, such as soy protein concentrates, OS-SCP resulted in 61 % less land use, while exacerbating the environmental impacts in all the other categories. OS-SCP had more impact on global warming (205-754 %), water consumption (166-1401 %), freshwater eutrophication (118-333 %), and terrestrial acidification (85-340 %) than other novel products, including yeast protein concentrate, methanotrophic bacterial SCP, and insect meal, while lowering global warming (11 %) and freshwater eutrophication (20 %) compared with dry microalgae biomass.
  •  
9.
  • Löfdahl, Anna, et al. (författare)
  • Silver nanoparticles alter cell viability ex vivo and in vitro and induce proinflammatory effects in human lung fibroblasts
  • 2020
  • Ingår i: Nanomaterials. - : MDPI AG. - 2079-4991. ; 10:9
  • Tidskriftsartikel (refereegranskat)abstract
    • Silver nanoparticles (AgNPs) are commonly used in commercial and medical applications. However, AgNPs may induce toxicity, extracellular matrix (ECM) changes and inflammatory responses. Fibroblasts are key players in remodeling processes and major producers of the ECM. The aims of this study were to explore the effect of AgNPs on cell viability, both ex vivo in murine precision cut lung slices (PCLS) and in vitro in human lung fibroblasts (HFL-1), and immunomodulatory responses in fibroblasts. PCLS and HFL-1 were exposed to AgNPs with different sizes, 10 nm and 75 nm, at concentrations 2 µg/mL and 10 µg/mL. Changes in synthesis of ECM proteins, growth factors and cytokines were analyzed in HFL-1. Ag10 and Ag75 affected cell viability, with significantly reduced metabolic activities at 10 µg/mL in both PCLS and HFL-1 after 48 h. AgNPs significantly increased procollagen I synthesis and release of IL-8, prostaglandin E2, RANTES and eotaxin, whereas reduced IL-6 release was observed in HFL-1 after 72 h. Our data indicate toxic effects of AgNP exposure on cell viability ex vivo and in vitro with altered procollagen and proinflammatory cytokine secretion in fibroblasts over time. Hence, careful characterizations of AgNPs are of importance, and future studies should include timepoints beyond 24 h.
  •  
10.
  • McCarrick, Sarah, et al. (författare)
  • Genotoxicity and inflammatory potential of stainless steel welding fume particles : an in vitro study on standard vs Cr(VI)-reduced flux-cored wires and the role of released metals
  • 2021
  • Ingår i: Archives of Toxicology. - : Springer Nature. - 0340-5761 .- 1432-0738. ; 95:9, s. 2961-2975
  • Tidskriftsartikel (refereegranskat)abstract
    • Welders are daily exposed to various levels of welding fumes containing several metals. This exposure can lead to an increased risk for different health effects which serves as a driving force to develop new methods that generate less toxic fumes. The aim of this study was to explore the role of released metals for welding particle-induced toxicity and to test the hypothesis that a reduction of Cr(VI) in welding fumes results in less toxicity by comparing the welding fume particles of optimized Cr(VI)-reduced flux-cored wires (FCWs) to standard FCWs. The welding particles were thoroughly characterized, and toxicity (cell viability, DNA damage and inflammation) was assessed following exposure to welding particles as well as their released metal fraction using cultured human bronchial epithelial cells (HBEC-3kt, 5-100 mu g/mL) and human monocyte-derived macrophages (THP-1, 10-50 mu g/mL). The results showed that all Cr was released as Cr(VI) for welding particles generated using standard FCWs whereas only minor levels (< 3% of total Cr) were released from the newly developed FCWs. Furthermore, the new FCWs were considerably less cytotoxic and did not cause any DNA damage in the doses tested. For the standard FCWs, the Cr(VI) released in cell media seemed to explain a large part of the cytotoxicity and DNA damage. In contrast, all particles caused rather similar inflammatory effects suggesting different underlying mechanisms. Taken together, this study suggests a potential benefit of substituting standard FCWs with Cr(VI)-reduced wires to achieve less toxic welding fumes and thus reduced risks for welders.
  •  
11.
  • Vallabani, N. V. Srikanth, et al. (författare)
  • Toxicity and health effects of ultrafine particles : Towards an understanding of the relative impacts of different transport modes
  • 2023
  • Ingår i: Environmental Research. - : Elsevier BV. - 0013-9351 .- 1096-0953. ; 231
  • Forskningsöversikt (refereegranskat)abstract
    • Exposure to particulate matter (PM) has been associated with a wide range of adverse health effects, but it is still unclear how particles from various transport modes differ in terms of toxicity and associations with different human health outcomes. This literature review aims to summarize toxicological and epidemiological studies of the effect of ultrafine particles (UFPs), also called nanoparticles (NPs, <100 nm), from different transport modes with a focus on vehicle exhaust (particularly comparing diesel and biodiesel) and non-exhaust as well as particles from shipping (harbor), aviation (airport) and rail (mainly subway/underground). The review includes both particles collected in laboratory tests and the field (intense traffic environments or collected close to harbor, airport, and in subway). In addition, epidemiological studies on UFPs are reviewed with special attention to studies aimed at distinguishing the effects of different transport modes. Results from toxicological studies indicate that both fossil and biodiesel NPs show toxic effects. Several in vivo studies show that inhalation of NPs collected in traffic environments not only impacts the lung, but also triggers cardiovascular effects as well as negative impacts on the brain, although few studies compared NPs from different sources. Few studies were found on aviation (airport) NPs, but the available results suggest similar toxic effects as traffic-related particles. There is still little data related to the toxic effects linked to several sources (shipping, road and tire wear, subway NPs), but in vitro results highlighted the role of metals in the toxicity of subway and brake wear particles. Finally, the epidemiological studies emphasized the current limited knowledge of the health impacts of source-specific UFPs related to different transport modes. This review discusses the necessity of future research for a better understanding of the relative potencies of NPs from different transport modes and their use in health risk assessment.
  •  
12.
  • Vallabani, N. V. Srikanth, et al. (författare)
  • Toxicity evaluation of particles formed during 3D-printing : Cytotoxic, genotoxic, and inflammatory response in lung and macrophage models
  • 2022
  • Ingår i: Toxicology. - : Elsevier BV. - 0300-483X .- 1879-3185. ; 467
  • Tidskriftsartikel (refereegranskat)abstract
    • Additive manufacturing (AM) or "3D-printing" is a ground-breaking technology that enables the production of complex 3D parts. Its rapid growth calls for immediate toxicological investigations of possible human exposures in order to estimate occupational health risks. Several laser-based powder bed fusion AM techniques are available of which many use metal powder in the micrometer range as feedstock. Large energy input from the laser on metal powders generates several by-products, like spatter and condensate particles. Due to often altered physicochemical properties and composition, spatter and condensate particles can result in different toxicological responses compared to the original powder particles. The toxicity of such particles has, however, not yet been investigated. The aim of the present study was to investigate the toxicity of condensate/spatter particles formed and collected upon selective laser melting (SLM) printing of metal alloy powders, including a nickel-chromiumbased superalloy (IN939), a nickel-based alloy (Hastelloy X, HX), a high-strength maraging steel (18Ni300), a stainless steel (316L), and a titanium alloy (Ti6Al4V). Toxicological endpoints investigated included cytotoxicity, generation of reactive oxygen species (ROS), genotoxicity (comet and micronucleus formation), and inflammatory response (cytokine/chemokine profiling) following exposure of human bronchial epithelial cells (HBEC) or monocytes/macrophages (THP-1). The results showed no or minor cytotoxicity in the doses tested (10 100 mu g/mL). Furthermore, no ROS generation or formation of micronucleus was observed in the HBEC cells. However, an increase in DNA strand breaks (detected by comet assay) was noted in cells exposed to HX, IN939, and Ti6Al4V, whereas no evident release of pro-inflammatory cytokine was observed from macrophages. Particle and surface characterization showed agglomeration in solution and different surface oxide compositions compared to the nominal bulk content. The extent of released nickel was small and related to the nickel content of the surface oxides, which was largely different from the bulk content. This may explain the limited toxicity found despite the high Ni bulk content of several powders. Taken together, this study suggests relatively low acute toxicity of condensates/spatter particles formed during SLM-printing using IN939, HX, 18Ni300, 316L, and Ti6Al4V as original metal powders.
  •  
13.
  • Vouitsis, Ilias, et al. (författare)
  • Transport-related airborne nanoparticles : Sources, different aerosol modes, and their toxicity
  • 2023
  • Ingår i: Atmospheric Environment. - : Elsevier BV. - 1352-2310 .- 1873-2844. ; 301
  • Forskningsöversikt (refereegranskat)abstract
    • Nanoparticle emissions from transport are of considerable importance because of their dominance in terms of particle number concentration in most urban atmospheres. Nanoparticles may carry toxic substances, posing a serious threat to pedestrians, passengers and residents. The road sector has been studied intensively in both academia and industry and considerable knowledge has already been gathered. Shipping is also a significant source of nanoparticles both at the global and the European level and may be responsible for cardiopulmonary diseases and lung cancer at the global level, while ship emissions are known as one of the least regulated sources of pollutants. Aviation nanoparticle emissions have also received increasing attention in recent years because of the rapid growth of air transport volumes and the expected expansion to meet capacity needs for future years. Exhaust nanoparticle emissions from diesel rail transport are not very well known and only a few sources addressing actual emission rates are available. All modes of transport are sources of non-exhaust nanoparticle number emission associated with the tire, brake, and road/rail surface wear and tear. This paper provides a literature review to identify the different aerosol modes (i.e., primary, delayed primary, and secondary) from each transport source (road, shipping, aviation, rail), in both laboratory and field tests and to explore their toxicity relevance. The review focuses on nanoparticles (<100 nm) and investigates both exhaust and non-exhaust emissions. We present details on nanoparticles produced by transport sources in the urban environment and parameters that influence nanoparticle emissions. Also, we review the potential relationship between the different aerosol modes and their toxicity effects and point out some issues concerning nanoparticle collection for chemical and toxicity characterization. As regards the toxicity part, it is concluded that transport sources emit large number of nanoparticles which may pose a health risk. They can damage the respiratory tract and lungs, thus playing a crucial role in the physiology of pulmonary pathologies. These nanoparticles can also affect other organs, and the cardiovascular, nervous, and reproductive systems. The combination of oxidative stress, mitochondrial damage, inflammation, and activation of apoptosis, are the initiators of the systemic toxicity of nanoparticles, triggered by a unique combination of heavy metals and organic compounds present in combustion products.
  •  
14.
  • Wang, Xuying, et al. (författare)
  • Bioaccessibility and reactivity of alloy powders used in powder bed fusion additive manufacturing
  • 2021
  • Ingår i: Materialia. - : Elsevier. - 2589-1529. ; 19, s. 1-10
  • Tidskriftsartikel (refereegranskat)abstract
    • Exposure to metal particles via the inhalation route unavoidably takes place at occupational settings during additive manufacturing of metals and alloys. This calls for investigations on possible adverse health effects. This study focuses on virgin and reused powders of three iron- and nickel-based alloy powders (316L, IN718, 18Ni300) widely used in additive manufacturing, and dust powder of 18Ni300 generated during laser melting. Investigations were performed from a physico-chemical and toxicological perspective assessing their bioaccessibility in artificial lysosomal fluid (ALF, simulating lung exposure to respirable particles), corrosion behavior, surface morphology and composition, microstructure, hydrodynamic size distribution in ALF, and in-vitro toxicity towards cultured human lung cells. Less than 1 % of the powder mass was dissolved from the passive alloys (316L, IN718) under simulated physiological conditions (pH 4.5, 37°C, 24 h), whereas the 18Ni300 iron-nickel alloy showed an active behavior and dissolved completely. Reused powders of 18Ni300 and IN718 showed no, or only minor, differences in surface oxide composition, metal release pattern, and corrosion behavior compared with virgin powders. After reuse, the 316L powder showed an enrichment of manganese within the outermost surface, an increased corrosion current, increased amounts of released iron and an increased fraction of particles with ferritic microstructure, which increased the extent of particle aggregation. All powders showed low, or negligible, cytotoxic potency and reactive oxygen species formation. Powder bed fusion using laser melting can hence affect the chemical, physical, and surface properties of non-fused powders, which, if reused, could influence the properties of the printed part.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-14 av 14

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy