SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Keenan G.) srt2:(2020-2023)"

Sökning: WFRF:(Keenan G.) > (2020-2023)

  • Resultat 1-9 av 9
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Niemi, MEK, et al. (författare)
  • 2021
  • swepub:Mat__t
  •  
2.
  • Kanai, M, et al. (författare)
  • 2023
  • swepub:Mat__t
  •  
3.
  •  
4.
  •  
5.
  • Ely, K. S., et al. (författare)
  • A reporting format for leaf-level gas exchange data and metadata
  • 2021
  • Ingår i: Ecological Informatics. - : Elsevier BV. - 1574-9541. ; 61
  • Tidskriftsartikel (refereegranskat)abstract
    • Leaf-level gas exchange data support the mechanistic understanding of plant fluxes of carbon and water. These fluxes inform our understanding of ecosystem function, are an important constraint on parameterization of terrestrial biosphere models, are necessary to understand the response of plants to global environmental change, and are integral to efforts to improve crop production. Collection of these data using gas analyzers can be both technically challenging and time consuming, and individual studies generally focus on a small range of species, restricted time periods, or limited geographic regions. The high value of these data is exemplified by the many publications that reuse and synthesize gas exchange data, however the lack of metadata and data reporting conventions make full and efficient use of these data difficult. Here we propose a reporting format for leaf-level gas exchange data and metadata to provide guidance to data contributors on how to store data in repositories to maximize their discoverability, facilitate their efficient reuse, and add value to individual datasets. For data users, the reporting format will better allow data repositories to optimize data search and extraction, and more readily integrate similar data into harmonized synthesis products. The reporting format specifies data table variable naming and unit conventions, as well as metadata characterizing experimental conditions and protocols. For common data types that were the focus of this initial version of the reporting format, i.e., survey measurements, dark respiration, carbon dioxide and light response curves, and parameters derived from those measurements, we took a further step of defining required additional data and metadata that would maximize the potential reuse of those data types. To aid data contributors and the development of data ingest tools by data repositories we provided a translation table comparing the outputs of common gas exchange instruments. Extensive consultation with data collectors, data users, instrument manufacturers, and data scientists was undertaken in order to ensure that the reporting format met community needs. The reporting format presented here is intended to form a foundation for future development that will incorporate additional data types and variables as gas exchange systems and measurement approaches advance in the future. The reporting format is published in the U.S. Department of Energy?s ESS-DIVE data repository, with documentation and future development efforts being maintained in a version control system.
  •  
6.
  • Walker, Anthony P., et al. (författare)
  • Integrating the evidence for a terrestrial carbon sink caused by increasing atmospheric CO2
  • 2021
  • Ingår i: New Phytologist. - : John Wiley & Sons. - 0028-646X .- 1469-8137. ; 229:5, s. 2413-2445
  • Tidskriftsartikel (refereegranskat)abstract
    • Atmospheric carbon dioxide concentration ([CO2]) is increasing, which increases leaf‐scale photosynthesis and intrinsic water‐use efficiency. These direct responses have the potential to increase plant growth, vegetation biomass, and soil organic matter; transferring carbon from the atmosphere into terrestrial ecosystems (a carbon sink). A substantial global terrestrial carbon sink would slow the rate of [CO2] increase and thus climate change. However, ecosystem CO2 responses are complex or confounded by concurrent changes in multiple agents of global change and evidence for a [CO2]‐driven terrestrial carbon sink can appear contradictory. Here we synthesize theory and broad, multidisciplinary evidence for the effects of increasing [CO2] (iCO2) on the global terrestrial carbon sink. Evidence suggests a substantial increase in global photosynthesis since pre‐industrial times. Established theory, supported by experiments, indicates that iCO2 is likely responsible for about half of the increase. Global carbon budgeting, atmospheric data, and forest inventories indicate a historical carbon sink, and these apparent iCO2 responses are high in comparison to experiments and predictions from theory. Plant mortality and soil carbon iCO2 responses are highly uncertain. In conclusion, a range of evidence supports a positive terrestrial carbon sink in response to iCO2, albeit with uncertain magnitude and strong suggestion of a role for additional agents of global change.
  •  
7.
  • Pihl, E., et al. (författare)
  • Ten new insights in climate science 2020- A horizon scan
  • 2020
  • Ingår i: Global Sustainability. - : Cambridge University Press. - 2059-4798.
  • Tidskriftsartikel (refereegranskat)abstract
    • Non-technical summary We summarize some of the past year's most important findings within climate change-related research. New research has improved our understanding of Earth's sensitivity to carbon dioxide, finds that permafrost thaw could release more carbon emissions than expected and that the uptake of carbon in tropical ecosystems is weakening. Adverse impacts on human society include increasing water shortages and impacts on mental health. Options for solutions emerge from rethinking economic models, rights-based litigation, strengthened governance systems and a new social contract. The disruption caused by COVID-19 could be seized as an opportunity for positive change, directing economic stimulus towards sustainable investments. Technical summary A synthesis is made of ten fields within climate science where there have been significant advances since mid-2019, through an expert elicitation process with broad disciplinary scope. Findings include: (1) a better understanding of equilibrium climate sensitivity; (2) abrupt thaw as an accelerator of carbon release from permafrost; (3) changes to global and regional land carbon sinks; (4) impacts of climate change on water crises, including equity perspectives; (5) adverse effects on mental health from climate change; (6) immediate effects on climate of the COVID-19 pandemic and requirements for recovery packages to deliver on the Paris Agreement; (7) suggested long-term changes to governance and a social contract to address climate change, learning from the current pandemic, (8) updated positive cost-benefit ratio and new perspectives on the potential for green growth in the short- A nd long-term perspective; (9) urban electrification as a strategy to move towards low-carbon energy systems and (10) rights-based litigation as an increasingly important method to address climate change, with recent clarifications on the legal standing and representation of future generations. Social media summary Stronger permafrost thaw, COVID-19 effects and growing mental health impacts among highlights of latest climate science. 
  •  
8.
  • Harrison, Sandy P., et al. (författare)
  • Eco-evolutionary optimality as a means to improve vegetation and land-surface models
  • 2021
  • Ingår i: New Phytologist. - : Wiley. - 0028-646X .- 1469-8137. ; 231:6, s. 2125-2141
  • Forskningsöversikt (refereegranskat)abstract
    • Global vegetation and land-surface models embody interdisciplinary scientific understanding of the behaviour of plants and ecosystems, and are indispensable to project the impacts of environmental change on vegetation and the interactions between vegetation and climate. However, systematic errors and persistently large differences among carbon and water cycle projections by different models highlight the limitations of current process formulations. In this review, focusing on core plant functions in the terrestrial carbon and water cycles, we show how unifying hypotheses derived from eco-evolutionary optimality (EEO) principles can provide novel, parameter-sparse representations of plant and vegetation processes. We present case studies that demonstrate how EEO generates parsimonious representations of core, leaf-level processes that are individually testable and supported by evidence. EEO approaches to photosynthesis and primary production, dark respiration and stomatal behaviour are ripe for implementation in global models. EEO approaches to other important traits, including the leaf economics spectrum and applications of EEO at the community level are active research areas. Independently tested modules emerging from EEO studies could profitably be integrated into modelling frameworks that account for the multiple time scales on which plants and plant communities adjust to environmental change.
  •  
9.
  • Kivimäki, Mika, et al. (författare)
  • Cognitive stimulation in the workplace, plasma proteins, and risk of dementia : three analyses of population cohort studies
  • 2021
  • Ingår i: The BMJ. - : BMJ Publishing Group Ltd. - 1756-1833. ; 374
  • Tidskriftsartikel (refereegranskat)abstract
    • OBJECTIVES: To examine the association between cognitively stimulating work and subsequent risk of dementia and to identify protein pathways for this association.DESIGN: Multicohort study with three sets of analyses.SETTING: United Kingdom, Europe, and the United States.PARTICIPANTS: Three associations were examined: cognitive stimulation and dementia risk in 107 896 participants from seven population based prospective cohort studies from the IPD-Work consortium (individual participant data meta-analysis in working populations); cognitive stimulation and proteins in a random sample of 2261 participants from one cohort study; and proteins and dementia risk in 13 656 participants from two cohort studies.MAIN OUTCOME MEASURES: Cognitive stimulation was measured at baseline using standard questionnaire instruments on active versus passive jobs and at baseline and over time using a job exposure matrix indicator. 4953 proteins in plasma samples were scanned. Follow-up of incident dementia varied between 13.7 to 30.1 years depending on the cohort. People with dementia were identified through linked electronic health records and repeated clinical examinations.RESULTS: During 1.8 million person years at risk, 1143 people with dementia were recorded. The risk of dementia was found to be lower for participants with high compared with low cognitive stimulation at work (crude incidence of dementia per 10 000 person years 4.8 in the high stimulation group and 7.3 in the low stimulation group, age and sex adjusted hazard ratio 0.77, 95% confidence interval 0.65 to 0.92, heterogeneity in cohort specific estimates I2=0%, P=0.99). This association was robust to additional adjustment for education, risk factors for dementia in adulthood (smoking, heavy alcohol consumption, physical inactivity, job strain, obesity, hypertension, and prevalent diabetes at baseline), and cardiometabolic diseases (diabetes, coronary heart disease, stroke) before dementia diagnosis (fully adjusted hazard ratio 0.82, 95% confidence interval 0.68 to 0.98). The risk of dementia was also observed during the first 10 years of follow-up (hazard ratio 0.60, 95% confidence interval 0.37 to 0.95) and from year 10 onwards (0.79, 0.66 to 0.95) and replicated using a repeated job exposure matrix indicator of cognitive stimulation (hazard ratio per 1 standard deviation increase 0.77, 95% confidence interval 0.69 to 0.86). In analysis controlling for multiple testing, higher cognitive stimulation at work was associated with lower levels of proteins that inhibit central nervous system axonogenesis and synaptogenesis: slit homologue 2 (SLIT2, fully adjusted β -0.34, P<0.001), carbohydrate sulfotransferase 12 (CHSTC, fully adjusted β -0.33, P<0.001), and peptidyl-glycine α-amidating monooxygenase (AMD, fully adjusted β -0.32, P<0.001). These proteins were associated with increased dementia risk, with the fully adjusted hazard ratio per 1 SD being 1.16 (95% confidence interval 1.05 to 1.28) for SLIT2, 1.13 (1.00 to 1.27) for CHSTC, and 1.04 (0.97 to 1.13) for AMD.CONCLUSIONS: The risk of dementia in old age was found to be lower in people with cognitively stimulating jobs than in those with non-stimulating jobs. The findings that cognitive stimulation is associated with lower levels of plasma proteins that potentially inhibit axonogenesis and synaptogenesis and increase the risk of dementia might provide clues to underlying biological mechanisms.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-9 av 9

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy