SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Kerje S) srt2:(2001-2004)"

Sökning: WFRF:(Kerje S) > (2001-2004)

  • Resultat 1-7 av 7
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Hillier, Ladeana W, et al. (författare)
  • Sequence and comparative analysis of the chicken genome provide unique perspectives on vertebrate evolution
  • 2004
  • Ingår i: Nature. - 0028-0836 .- 1476-4687. ; 432:7018, s. 695-716
  • Tidskriftsartikel (refereegranskat)abstract
    • We present here a draft genome sequence of the red jungle fowl, Gallus gallus. Because the chicken is a modern descendant of the dinosaurs and the first non-mammalian amniote to have its genome sequenced, the draft sequence of its genome--composed of approximately one billion base pairs of sequence and an estimated 20,000-23,000 genes--provides a new perspective on vertebrate genome evolution, while also improving the annotation of mammalian genomes. For example, the evolutionary distance between chicken and human provides high specificity in detecting functional elements, both non-coding and coding. Notably, many conserved non-coding sequences are far from genes and cannot be assigned to defined functional classes. In coding regions the evolutionary dynamics of protein domains and orthologous groups illustrate processes that distinguish the lineages leading to birds and mammals. The distinctive properties of avian microchromosomes, together with the inferred patterns of conserved synteny, provide additional insights into vertebrate chromosome architecture.
  •  
2.
  •  
3.
  •  
4.
  • Kerje, S., et al. (författare)
  • The Dominant white, Dun and Smoky color variants in chicken are associated with insertion/deletion polymorphisms in the PMEL17 gene
  • 2004
  • Ingår i: Genetics. - : Oxford University Press (OUP). - 0016-6731 .- 1943-2631. ; 168:3, s. 1507-1518
  • Tidskriftsartikel (refereegranskat)abstract
    • Dominant white, Dun, and Smoky are alleles at the Dominant white locus, which is one of the major loci affecting plumage color in the domestic chicken. Both Dominant white and Dun inhibit the expression of black eumelanin. Smoky arose in a White Leghorn homozygous for Dominant white and partially restores pigmentation. PMEL17 encodes a melanocyte-specific protein and was identified as a positional candidate gene due to its role in the development of eumelanosomes. Linkage analysis of PMEL17 and Dominant while using a red jungle fowl/White Leghorn intercross revealed no recombination between these loci. Sequence analysis showed that the Dominant white allele was exclusively associated with a 9-bp insertion in exon 10, leading to an insertion of three amino acids in the PMEL17 transmembrane region. Similarly, a deletion of five amino acids in the transmembrane region occurs in the protein encoded by Dun. The Smoky allele shared the 9-bp insertion in exon 10 with Dominant white, as expected from its origin, but also had a deletion of 12 nucleotides in exon 6, eliminating four amino acids from the mature protein. These mutations are, together with the recessive silver mutation in the mouse, the only PMEL17 mutations with phenotypic effects that have been described so far in any species.
  •  
5.
  •  
6.
  • Kerje, S., et al. (författare)
  • Melanocortin 1-receptor (MC1R) mutations are associated with plumage colour in chicken
  • 2003
  • Ingår i: Animal Genetics. - : Wiley. - 0268-9146 .- 1365-2052. ; 34:4, s. 241-248
  • Tidskriftsartikel (refereegranskat)abstract
    • The co-segregation of plumage colour and sequence polymorphism in the melanocortin 1-receptor gene (MC1R) was investigated using an intercross between the red junglefowl and White Leghorn chickens. The results provided compelling evidence that the Extended black (E) locus controlling plumage colour is equivalent to MC1R. E/MC1R was assigned to chromosome 11 with overwhelming statistical support. Sequence analysis indicated that the E92K substitution, causing a constitutively active receptor in the sombre mouse, is the most likely causative mutation for the Extended black allele carried by the White Leghorn founders in this intercross. The MC1R sequence associated with the recessive buttercup (ebc) allele indicated that this allele evolved from a dominant Extended black allele as it shared the E92K and M71T substitutions with some E alleles. It also carried a third missense mutation H215P which thus may interfere with the constitutive activation of the receptor caused by E92K (and possibly M71T).
  •  
7.
  • Kerje, S., et al. (författare)
  • The twofold difference in adult size between the red junglefowl and White Leghorn chickens is largely explained by a limited number of QTLs
  • 2003
  • Ingår i: Animal Genetics. - : Wiley. - 0268-9146 .- 1365-2052. ; 34:4, s. 264-274
  • Tidskriftsartikel (refereegranskat)abstract
    • A large intercross between the domestic White Leghorn chicken and the wild ancestor, the red junglefowl, has been used in a Quantitative Trait Loci (QTL) study of growth and egg production. The linkage map based on 105 marker loci was in good agreement with the chicken consensus map. The growth of the 851 F2 individuals was lower than both parental lines prior to 46 days of age and intermediate to the two parental lines thereafter. The QTL analysis of growth traits revealed 13 loci that showed genome-wide significance. The four major growth QTLs explained 50 and 80% of the difference in adult body weight between the founder populations for females and males, respectively. A major QTL for growth, located on chromosome 1 appears to have pleiotropic effects on feed consumption, egg production and behaviour. There was a strong positive correlation between adult body weight and average egg weight. However, three QTLs affecting average egg weight but not body weight were identified. An interesting observation was that the estimated effects for the four major growth QTLs all indicated a codominant inheritance.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-7 av 7

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy