SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Kerstein Alan R.) srt2:(2018)"

Sökning: WFRF:(Kerstein Alan R.) > (2018)

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Lackmann, Tim, 1983, et al. (författare)
  • A representative linear eddy model for simulating spray combustion in engines (RILEM)
  • 2018
  • Ingår i: Combustion and Flame. - : Elsevier BV. - 1556-2921 .- 0010-2180. ; 193, s. 1-15
  • Tidskriftsartikel (refereegranskat)abstract
    • The design of new combustion concepts for low emission, high efficiency internal combustion engines often leads to combustion under low temperature conditions. Under those conditions, the assumption of fast chemistry, which has been the cornerstone of many turbulent combustion models, is not strictly valid anymore and the validity and applicability of classical combustion models such as flamelet models might be limited. In this paper we present an updated version of a recently developed regime independent modeling approach for turbulent non-premixed combustion with an emphasis on applications to internal combustion engines. The model utilizes the mode-and regime-independent linear eddy model (LEM) as a combustion and micro-mixing model in a representative way. This is achieved by time advancing only one LEM realization representing the combustion process in the whole engine domain and coupling it to a RANS simulation with a presumed 9-function PDF approach for the mixture fraction. The use of LEM rather than flamelet combustion closure has several benefits, an important one being regime independence. Additionally, LEM incorporates a physically based representation of the stochastic variability of turbulent eddy motions, implying an intrinsic representation of scalar dissipation rate fluctuations. In order to capture key features of engine spray-combustion environments, the LEM methodology is extended by introducing a conical LEM domain to approximate spray spatial development, fuel vapor input based on CFD-prescribed spray evaporation, and a representation of large scale turbulent motions distinct from the inertial-range turbulence that develops at smaller scales. The representative character of LEM states is evaluated by comparing mixture fraction statistics and scalar dissipation rates generated by LEM and the CFD. The performance and predictive capability of the model for typical engine applications is evaluated by simulating a standard test case-Spray B of the Engine Combustion Network (ECN)-and comparing the results with experimental data. The results demonstrate the capability of the model to represent the spray combustion process with reasonable accuracy but also reveal some limitations. The limitations and shortcomings of the model are discussed and an outlook for further development of the approach into a regime-and mode-independent combustion model for internal engine applications is given. (C) 2018 The Combustion Institute. Published by Elsevier Inc. All rights reserved.
  •  
2.
  • Lignell, David, et al. (författare)
  • One-dimensional turbulence modeling for cylindrical and spherical flows: model formulation and application
  • 2018
  • Ingår i: Theoretical and Computational Fluid Dynamics. - : Springer Science and Business Media LLC. - 1432-2250 .- 0935-4964. ; 32:4, s. 495-520
  • Tidskriftsartikel (refereegranskat)abstract
    • The one-dimensional turbulence (ODT) model resolves a full range of time and length scales and is computationally efficient. ODT has been applied to a wide range of complex multi-scale flows, such as turbulent combustion. Previous ODT comparisons to experimental data have focused mainly on planar flows. Applications to cylindrical flows, such as round jets, have been based on rough analogies, e.g., by exploiting the fortuitous consistency of the similarity scalings of temporally developing planar jets and spatially developing round jets. To obtain a more systematic treatment, a new formulation of the ODT model in cylindrical and spherical coordinates is presented here. The model is written in terms of a geometric factor so that planar, cylindrical, and spherical configurations are represented in the same way. Temporal and spatial versions of the model are presented. A Lagrangian finite-volume implementation is used with a dynamically adaptive mesh. The adaptive mesh facilitates the implementation of cylindrical and spherical versions of the triplet map, which is used to model turbulent advection (eddy events) in the one-dimensional flow coordinate. In cylindrical and spherical coordinates, geometric stretching of the three triplet map images occurs due to the radial dependence of volume, with the stretching being strongest near the centerline. Two triplet map variants, TMA and TMB, are presented. In TMA, the three map images have the same volume, but different radial segment lengths. In TMB, the three map images have the same radial segment lengths, but different segment volumes. Cylindrical results are presented for temporal pipe flow, a spatial nonreacting jet, and a spatial nonreacting jet flame. These results compare very well to direct numerical simulation for the pipe flow, and to experimental data for the jets. The nonreacting jet treatment overpredicts velocity fluctuations near the centerline, due to the geometric stretching of the triplet maps and its effect on the eddy event rate distribution. TMB performs better than TMA. A hybrid planar-TMB (PTMB) approach is also presented, which further improves the results. TMA, TMB, and PTMB are nearly identical in the pipe flow where the key dynamics occur near the wall away from the centerline. The jet flame illustrates effects of variable density and viscosity, including dilatational effects.
  •  
3.
  • Movaghar, Amirreza, 1987, et al. (författare)
  • Modeling and numerical study of primary breakup under diesel conditions
  • 2018
  • Ingår i: International Journal of Multiphase Flow. - : Elsevier BV. - 0301-9322. ; 98:2018, s. 110-119
  • Tidskriftsartikel (refereegranskat)abstract
    • A recently introduced stochastic model for reduced numerical simulation of primary jet breakup is evaluated by comparing model predictions to DNS results for primary jet breakup under diesel conditions. The model uses one-dimensional turbulence (ODT) to simulate liquid and gas time advancement along a lateral line of sight. This one-dimensional domain is interpreted as a Lagrangian object that is advected downstream at the jet bulk velocity, thus producing a flow state expressed as a function of streamwise and lateral location. Multiple realizations are run to gather ensemble statistics that are compared to DNS results. The model incorporates several empirical extensions of the original ODT model that represent the phenomenology governing the Weber number dependence of global jet structure. The model as previously formulated, including the assigned values of tunable parameters, is used here without modification in order to test its capability to predict various statistics of droplets generated by primary breakup. This test is enabled by the availability of DNS results that are suitable for model validation. Properties that are examined are the rate of bulk liquid mass conversion into droplets, the droplet size distribution, and the dependence of droplet velocities on droplet diameter. Quantities of greatest importance for engine modeling are found to be predicted with useful accuracy, thereby demonstrating a more detailed predictive capability by a highly reduced numerical model of primary jet breakup than has previously been achieved.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy