SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Khotyaintsev Yu V.) srt2:(2020-2024)"

Sökning: WFRF:(Khotyaintsev Yu V.) > (2020-2024)

  • Resultat 1-33 av 33
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Carbone, F., et al. (författare)
  • Statistical study of electron density turbulence and ion-cyclotron waves in the inner heliosphere : Solar Orbiter observations
  • 2021
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 656
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. The recently released spacecraft potential measured by the RPW instrument on board Solar Orbiter has been used to estimate the solar wind electron density in the inner heliosphere. Aims. The measurement of the solar wind's electron density, taken in June 2020, has been analysed to obtain a thorough characterization of the turbulence and intermittency properties of the fluctuations. Magnetic field data have been used to describe the presence of ion-scale waves. Methods. To study and quantify the properties of turbulence, we extracted selected intervals. We used empirical mode decomposition to obtain the generalized marginal Hilbert spectrum, equivalent to the structure functions analysis, which additionally reduced issues typical of non-stationary, short time series. The presence of waves was quantitatively determined by introducing a parameter describing the time-dependent, frequency-filtered wave power. Results. A well-defined inertial range with power-law scalng was found almost everywhere in the sample studied. However, the Kolmogorov scaling and the typical intermittency effects are only present in fraction of the samples. Other intervals have shallower spectra and more irregular intermittency, which are not described by models of turbulence. These are observed predominantly during intervals of enhanced ion frequency wave activity. Comparisons with compressible magnetic field intermittency (from the MAG instrument) and with an estimate of the solar wind velocity (using electric and magnetic field) are also provided to give general context and help determine the cause of these anomalous fluctuations.
  •  
2.
  • Graham, Daniel B., et al. (författare)
  • Kinetic electrostatic waves and their association with current structures in the solar wind
  • 2021
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 656
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. A variety of kinetic electrostatic and electromagnetic waves develop in the solar wind and the relationship between these waves and larger scale structures, such as current sheets and ongoing turbulence, remain a topic of investigation. Similarly, the instabilities producing ion-acoustic waves in the solar wind are still an open question. Aims. The goals of this paper are to investigate electrostatic Langmuir and ion-acoustic waves in the solar wind at 0.5 AU and determine whether current sheets and associated streaming instabilities can produce the observed waves. The relationship between these waves and currents observed in the solar wind is investigated statistically. Methods. Solar Orbiter's Radio and Plasma Waves instrument suite provides high-resolution snapshots of the fluctuating electric field. The Low Frequency Receiver resolves the waveforms of ion-acoustic waves and the Time Domain Sampler resolves the waveforms of both ion-acoustic and Langmuir waves. Using these waveform data, we determine when these waves are observed in relation to current structures in the solar wind, estimated from the background magnetic field. Results. Langmuir and ion-acoustic waves are frequently observed in the solar wind. Ion-acoustic waves are observed about 1% of the time at 0.5 AU. The waves are more likely to be observed in regions of enhanced currents. However, the waves typically do not occur at current structures themselves. The observed currents in the solar wind are too small to drive instability by the relative drift between single ion and electron populations. When multi-component ion or electron distributions are present, the observed currents may be sufficient for instabilities to occur. Ion beams are the most plausible source of ion-acoustic waves in the solar wind. The spacecraft potential is confirmed to be a reliable probe of the background electron density when comparing the peak frequencies of Langmuir waves with the plasma frequency calculated from the spacecraft potential.
  •  
3.
  • Khotyaintsev, Yu, V, et al. (författare)
  • Density fluctuations associated with turbulence and waves First observations by Solar Orbiter
  • 2021
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 656
  • Tidskriftsartikel (refereegranskat)abstract
    • Aims. The aim of this work is to demonstrate that the probe-to-spacecraft potential measured by RPW on Solar Orbiter can be used to derive the plasma (electron) density measurement, which exhibits both a high temporal resolution and a high level of accuracy. To investigate the physical nature of the solar wind turbulence and waves, we analyze the density and magnetic field fluctuations around the proton cyclotron frequency observed by Solar Orbiter during the first perihelion encounter (similar to 0.5AU away from the Sun). Methods. We used the plasma density based on measurements of the probe-to-spacecraft potential in combination with magnetic field measurements by MAG to study the fields and density fluctuations in the solar wind. In particular, we used the polarization of the wave magnetic field, the phase between the compressible magnetic field and density fluctuations, and the compressibility ratio (the ratio of the normalized density fluctuations to the normalized compressible fluctuations of B) to characterize the observed waves and turbulence. Results. We find that the density fluctuations are 180 degrees out of phase (anticorrelated) with the compressible component of magnetic fluctuations for intervals of turbulence, whereas they are in phase for the circular-polarized waves. We analyze, in detail, two specific events with a simultaneous presence of left- and right-handed waves at di fferent frequencies. We compare the observed wave properties to a prediction of the three-fluid (electrons, protons, and alphas) model. We find a limit on the observed wavenumbers, 10(-6) < k < 7 > 10(-6) m(-1), which corresponds to a wavelength of 7 x 10(6) > lambda > 10(6) m. We conclude that it is most likely that both the leftand right-handed waves correspond to the low-wavenumber part (close to the cut-o ff at Omega(cHe++)) of the proton-band electromagnetic ion cyclotron (left-handed wave in the plasma frame confined to the frequency range Omega(cHe++) < omega < Omega(cp)) waves propagating in the outwards and inwards directions, respectively. The fact that both wave polarizations are observed at the same time and the identified wave mode has a low group velocity suggests that the double-banded events occur in the source regions of the waves.
  •  
4.
  • Steinvall, Konrad, et al. (författare)
  • Solar wind current sheets and deHoffmann-Teller analysis First results from Solar Orbiter's DC electric field measurements
  • 2021
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 656
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. Solar Orbiter was launched on 10 February 2020 with the purpose of investigating solar and heliospheric physics using a payload of instruments designed for both remote and in situ studies. Similar to the recently launched Parker Solar Probe, and unlike earlier missions, Solar Orbiter carries instruments designed to measure low-frequency DC electric fields. Aims. In this paper, we assess the quality of the low-frequency DC electric field measured by the Radio and Plasma Waves instrument (RPW) on Solar Orbiter. In particular, we investigate the possibility of using Solar Orbiter's DC electric and magnetic field data to estimate the solar wind speed. Methods. We used a deHoffmann-Teller (HT) analysis, based on measurements of the electric and magnetic fields, to find the velocity of solar wind current sheets, which minimises a single component of the electric field. By comparing the HT velocity to the proton velocity measured by the Proton and Alpha particle Sensor (PAS), we have developed a simple model for the effective antenna length, L-eff of the E-field probes. We then used the HT method to estimate the speed of the solar wind. Results. Using the HT method, we find that the observed variations in E-y are often in excellent agreement with the variations in the magnetic field. The magnitude of E-y, however, is uncertain due to the fact that the L-eff depends on the plasma environment. Here, we derive an empirical model relating L-eff to the Debye length, which we can use to improve the estimate of E-y and, consequently, the estimated solar wind speed. Conclusions. The low-frequency electric field provided by RPW is of high quality. Using the deHoffmann-Teller analysis, Solar Orbiter's magnetic and electric field measurements can be used to estimate the solar wind speed when plasma data are unavailable.
  •  
5.
  • Soucek, J., et al. (författare)
  • Solar Orbiter Radio and Plasma Waves - Time Domain Sampler : In-flight performance and first results
  • 2021
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 656
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. The Radio and Plasma Waves (RPW) instrument on board Solar Orbiter has been operating nearly continuously since the launch in February 2020. The Time Domain Sampler (TDS) receiver of the RPW instrument is dedicated to waveform measurements of plasma waves and dust impact signatures in an intermediate frequency range from 0.2 to 200 kHz. Aims. This article presents the first data from the RPW-TDS receiver and discusses the in-flight performance of the instrument and, in particular, the on-board wave and dust detection algorithm. We present the TDS data products and its scientific operation. We demonstrate the content of the dataset on several examples. In particular, we study the distribution of solar Langmuir waves in the first year of observations and one Type III burst event. Methods. The on-board detection algorithm is described in detail in this article and classifies the observed waveform snapshots, identifying plasma waves and dust impacts based on the ratio of their maximum amplitude to their median and on the spectral bandwidth. The algorithm allows TDS to downlink the most scientifically relevant waveforms and to perform an on-board statistical characterization of the processed data. Results. The detection algorithm of TDS is shown to perform very well in its detection of plasma waves and dust impacts with a high accuracy. The initial analysis of statistical data returned by TDS shows that sporadic Langmuir waves that are not associated with Type III events are routinely observed in the inner heliosphere, with a clear increase in occurrence rate closer to the Sun. We also present an example of RPW observations during an encounter of the source region of a Type III burst, which exploits the on-board calculated histograms data.
  •  
6.
  • Vecchio, A., et al. (författare)
  • Solar Orbiter/RPW antenna calibration in the radio domain and its application to type III burst observations
  • 2021
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 656, s. A33-
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. In order to allow for a comparison with the measurements from other antenna systems, the voltage power spectral density measured by the Radio and Plasma waves receiver (RPW) on board Solar Orbiter needs to be converted into physical quantities that depend on the intrinsic properties of the radiation itself (e.g., the brightness of the source). Aims. The main goal of this study is to perform a calibration of the RPW dipole antenna system that allows for the conversion of the voltage power spectral density measured at the receiver's input into the incoming flux density. Methods. We used space observations from the Thermal Noise Receiver (TNR) and the High Frequency Receiver (HFR) to perform the calibration of the RPW dipole antenna system. Observations of type III bursts by the Wind spacecraft are used to obtain a reference radio flux density for cross-calibrating the RPW dipole antennas. The analysis of a large sample of HFR observations (over about ten months), carried out jointly with an analysis of TNR-HFR data and prior to the antennas' deployment, allowed us to estimate the reference system noise of the TNR-HFR receivers. Results. We obtained the effective length, l(eff), of the RPW dipoles and the reference system noise of TNR-HFR in space, where the antennas and pre-amplifiers are embedded in the solar wind plasma. The obtained l(eff) values are in agreement with the simulation and measurements performed on the ground. By investigating the radio flux intensities of 35 type III bursts simultaneously observed by Wind and Solar Orbiter, we found that while the scaling of the decay time as a function of the frequency is the same for the Waves and RPW instruments, their median values are higher for the former. This provides the first observational evidence that Type III radio waves still undergo density scattering, even when they propagate from the source, in a medium with a plasma frequency that is well below their own emission frequency.
  •  
7.
  • Dimmock, A. P., et al. (författare)
  • Analysis of multiscale structures at the quasi-perpendicular Venus bow shock Results from Solar Orbiter's first Venus flyby
  • 2022
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 660
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. Solar Orbiter is a European Space Agency mission with a suite of in situ and remote sensing instruments to investigate the physical processes across the inner heliosphere. During the mission, the spacecraft is expected to perform multiple Venus gravity assist maneuvers while providing measurements of the Venusian plasma environment. The first of these occurred on 27 December 2020, in which the spacecraft measured the regions such as the distant and near Venus magnetotail, magnetosheath, and bow shock. Aims. This study aims to investigate the outbound Venus bow shock crossing measured by Solar Orbiter during the first flyby. We study the complex features of the bow shock traversal in which multiple large amplitude magnetic field and density structures were observed as well as higher frequency waves. Our aim is to understand the physical mechanisms responsible for these high amplitude structures, characterize the higher frequency waves, determine the source of the waves, and put these results into context with terrestrial bow shock observations. Methods. High cadence magnetic field, electric field, and electron density measurements were employed to characterize the properties of the large amplitude structures and identify the relevant physical process. Minimum variance analysis, theoretical shock descriptions, coherency analysis, and singular value decomposition were used to study the properties of the higher frequency waves to compare and identify the wave mode. Results. The non-planar features of the bow shock are consistent with shock rippling and/or large amplitude whistler waves. Higher frequency waves are identified as whistler-mode waves, but their properties across the shock imply they may be generated by electron beams and temperature anisotropies. Conclusions. The Venus bow shock at a moderately high Mach number (similar to 5) in the quasi-perpendicular regime exhibits complex features similar to the Earth's bow shock at comparable Mach numbers. The study highlights the need to be able to distinguish between large amplitude waves and spatial structures such as shock rippling. The simultaneous high frequency observations also demonstrate the complex nature of energy dissipation at the shock and the important question of understanding cross-scale coupling in these complex regions. These observations will be important to interpreting future planetary missions and additional gravity assist maneuvers.
  •  
8.
  • Lotekar, A., et al. (författare)
  • Multisatellite MMS Analysis of Electron Holes in the Earth's Magnetotail : Origin, Properties, Velocity Gap, and Transverse Instability
  • 2020
  • Ingår i: Journal of Geophysical Research - Space Physics. - : American Geophysical Union (AGU). - 2169-9380 .- 2169-9402. ; 125:9
  • Tidskriftsartikel (refereegranskat)abstract
    • We present a statistical analysis of more than 2,400 electrostatic solitary waves interpreted as electron holes (EH) measured aboard at least three Magnetospheric Multiscale (MMS) spacecraft in the Earth's magnetotail. The velocities of EHs are estimated using the multispacecraft interferometry. The EH velocities in the plasma rest frame are in the range from just a few km/s, which is much smaller than ion thermal velocity V-Ti, up to 20,000 km/s, which is comparable to electron thermal velocity V-Te. We argue that fast EHs with velocities larger than about 0.1V(Te) are produced by bump-on-tail instabilities, while slow EHs with velocities below about 0.05V(Te) can be produced by warm bistream and, probably, Buneman-type instabilities. We show that typically fast and slow EHs do not coexist, indicating that the instabilities producing EHs of different types operate independently. We have identified a gap in the distribution of EH velocities between V-Ti and 2V(Ti), which is considered to be the evidence for self-acceleration (Zhou & Hutchinson, 2018) or ion Landau damping of EHs. Parallel spatial scales and amplitudes of EHs are typically between lambda(D) and 10 lambda(D) and between 10(-3) T-e and 0.1 T-e, respectively. We show that electrostatic potential amplitudes of EHs are below the threshold of the transverse instability and highly likely restricted by the nonlinear saturation criterion of electron streaming instabilities seeding electron hole formation: e Phi(0)less than or similar to me pi(2)d(parallel to)(2), where pi = min(gamma, 1.5 omega(ce)), where gamma is the increment of instabilities seeding EH formation, while pi(ce) is electron cyclotron frequency. The implications of the presented results are discussed.
  •  
9.
  • Alqeeq, S. W., et al. (författare)
  • Two Classes of Equatorial Magnetotail Dipolarization Fronts Observed by Magnetospheric Multiscale Mission : A Statistical Overview
  • 2023
  • Ingår i: Journal of Geophysical Research - Space Physics. - : American Geophysical Union (AGU). - 2169-9380 .- 2169-9402. ; 128:10
  • Tidskriftsartikel (refereegranskat)abstract
    • We carried out a statistical study of equatorial dipolarization fronts (DFs) detected by the Magnetospheric Multiscale mission during the full 2017 Earth's magnetotail season. We found that two DF classes are distinguished: class I (74.4%) corresponds to the standard DF properties and energy dissipation and a new class II (25.6%). This new class includes the six DF discussed in Alqeeq et al. (2022, ) and corresponds to a bump of the magnetic field associated with a minimum in the ion and electron pressures and a reversal of the energy conversion process. The possible origin of this second class is discussed. Both DF classes show that the energy conversion process in the spacecraft frame is driven by the diamagnetic current dominated by the ion pressure gradient. In the fluid frame, it is driven by the electron pressure gradient. In addition, we have shown that the energy conversion processes are not homogeneous at the electron scale mostly due to the variations of the electric fields for both DF classes.
  •  
10.
  • Chen, L-J, et al. (författare)
  • Lower-Hybrid Drift Waves Driving Electron Nongyrotropic Heating and Vortical Flows in a Magnetic Reconnection Layer
  • 2020
  • Ingår i: Physical Review Letters. - : American Physical Society (APS). - 0031-9007 .- 1079-7114. ; 125:2
  • Tidskriftsartikel (refereegranskat)abstract
    • We report measurements of lower-hybrid drift waves driving electron heating and vortical flows in an electron-scale reconnection layer under a guide field. Electrons accelerated by the electrostatic potential of the waves exhibit perpendicular and nongyrotropic heating. The vortical flows generate magnetic field perturbations comparable to the guide field magnitude. The measurements reveal a new regime of electron-wave interaction and how this interaction modifies the electron dynamics in the reconnection layer.
  •  
11.
  • Cozzani, Giulia, et al. (författare)
  • Structure of a Perturbed Magnetic Reconnection Electron Diffusion Region in the Earth's Magnetotail
  • 2021
  • Ingår i: Physical Review Letters. - : American Physical Society (APS). - 0031-9007 .- 1079-7114. ; 127:21
  • Tidskriftsartikel (refereegranskat)abstract
    • We report in situ observations of an electron diffusion region (EDR) and adjacent separatrix region in the Earth's magnetotail. We observe significant magnetic field oscillations near the lower hybrid frequency which propagate perpendicularly to the reconnection plane. We also find that the strong electron-scale gradients close to the EDR exhibit significant oscillations at a similar frequency. Such oscillations are not expected for a crossing of a steady 2D EDR, and can be explained by a complex motion of the reconnection plane induced by current sheet kinking propagating in the out-of-reconnection-plane direction. Thus, all three spatial dimensions have to be taken into account to explain the observed perturbed EDR crossing. These results shed light on the interplay between magnetic reconnection and current sheet drift instabilities in electron-scale current sheets and highlight the need for adopting a 3D description of the EDR, going beyond the two-dimensional and steady-state conception of reconnection.
  •  
12.
  • Dimmock, Andrew P., et al. (författare)
  • Mirror Mode Storms Observed by Solar Orbiter
  • 2022
  • Ingår i: Journal of Geophysical Research - Space Physics. - : American Geophysical Union (AGU). - 2169-9380 .- 2169-9402. ; 127:11
  • Tidskriftsartikel (refereegranskat)abstract
    • Mirror modes (MMs) are ubiquitous in space plasma and grow from pressure anisotropy. Together with other instabilities, they play a fundamental role in constraining the free energy contained in the plasma. This study focuses on MMs observed in the solar wind by Solar Orbiter (SolO) for heliocentric distances between 0.5 and 1 AU. Typically, MMs have timescales from several to tens of seconds and are considered quasi-MHD structures. In the solar wind, they also generally appear as isolated structures. However, in certain conditions, prolonged and bursty trains of higher frequency MMs are measured, which have been labeled previously as MM storms. At present, only a handful of existing studies have focused on MM storms, meaning that many open questions remain. In this study, SolO has been used to investigate several key aspects of MM storms: their dependence on heliocentric distance, association with local plasma properties, temporal/spatial scale, amplitude, and connections with larger-scale solar wind transients. The main results are that MM storms often approach local ion scales and can no longer be treated as quasi-magnetohydrodynamic, thus breaking the commonly used long-wavelength assumption. They are typically observed close to current sheets and downstream of interplanetary shocks. The events were observed during slow solar wind speeds and there was a tendency for higher occurrence closer to the Sun. The occurrence is low, so they do not play a fundamental role in regulating ambient solar wind but may play a larger role inside transients.
  •  
13.
  • Gao, C. -H, et al. (författare)
  • Effect of the Electric Field on the Agyrotropic Electron Distributions
  • 2021
  • Ingår i: Geophysical Research Letters. - : AMER GEOPHYSICAL UNION. - 0094-8276 .- 1944-8007. ; 48:5
  • Tidskriftsartikel (refereegranskat)abstract
    • We investigate agyrotropic electron distributions from two magnetopause events observed by magnetospheric multiscale (MMS) spacecraft. Agyrotropic electron distributions can be generated by the finite electron gyration at an electron-scale boundary, and the electric field normal to this boundary usually contributes to the electron acceleration to make the agyrotropic distributions more apparent. The effect of the electric field becomes important only when it is sufficiently strong and local, meaning its electrostatic potential is comparable to or larger than the electron temperature, and its width is smaller than the electron thermal gyroradius, so that this electric field can directly accelerate part of the electrons out of the original core to form agyrotropic electron distributions. Also, we reproduce the measured electron "finger" structures from test particle simulations, which can be effectively suppressed by increasing the sampling rate of the electron measurement. Plain Language Summary Agyrotropic electron distributions reveal valuable information of electron dynamics at electron scales, and the generation of these distributions have been extensively studied. In this study, we provide a new possibility to generate agyrotropic electron distributions with a strong localized electric field, which can accelerate part of electrons out of the original electron core to form agyrotropic distributions. As such large-amplitude small-scale electric field fluctuations are frequently observed in turbulent plasma environments, we suggest that more agyrotropic electron distributions can be observed with high temporal resolution measurements.
  •  
14.
  • Graham, D. B., et al. (författare)
  • Direct observations of anomalous resistivity and diffusion in collisionless plasma
  • 2022
  • Ingår i: Nature Communications. - : Springer Nature. - 2041-1723. ; 13:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Coulomb collisions provide plasma resistivity and diffusion but in many low-density astrophysical plasmas such collisions between particles are extremely rare. Scattering of particles by electromagnetic waves can lower the plasma conductivity. Such anomalous resistivity due to wave-particle interactions could be crucial to many processes, including magnetic reconnection. It has been suggested that waves provide both diffusion and resistivity, which can support the reconnection electric field, but this requires direct observation to confirm. Here, we directly quantify anomalous resistivity, viscosity, and cross-field electron diffusion associated with lower hybrid waves using measurements from the four Magnetospheric Multiscale (MMS) spacecraft. We show that anomalous resistivity is approximately balanced by anomalous viscosity, and thus the waves do not contribute to the reconnection electric field. However, the waves do produce an anomalous electron drift and diffusion across the current layer associated with magnetic reconnection. This leads to relaxation of density gradients at timescales of order the ion cyclotron period, and hence modifies the reconnection process. It is suggested that waves can provide both diffusion and resistivity that can potentially support the reconnection electric field in low-density astrophysical plasmas. Here, the authors show, using direct spacecraft measurements, that the waves contribute to anomalous diffusion but do not contribute to the reconnection electric field.
  •  
15.
  • Johlander, Andreas, 1990-, et al. (författare)
  • Ion Acceleration Efficiency at the Earth's Bow Shock : Observations and Simulation Results
  • 2021
  • Ingår i: Astrophysical Journal. - : American Astronomical Society. - 0004-637X .- 1538-4357. ; 914:2
  • Tidskriftsartikel (refereegranskat)abstract
    • Collisionless shocks are some of the most efficient particle accelerators in heliospheric and astrophysical plasmas. Here we study and quantify ion acceleration at Earth's bow shock with observations from NASA's Magnetospheric Multiscale (MMS) satellites and in a global hybrid-Vlasov simulation. From the MMS observations, we find that quasiparallel shocks are more efficient at accelerating ions. There, up to 15% of the available energy goes into accelerating ions above 10 times their initial energy. Above a shock-normal angle of similar to 50 degrees, essentially no energetic ions are observed downstream of the shock. We find that ion acceleration efficiency is significantly lower when the shock has a low Mach number (M ( A ) < 6) while there is little Mach number dependence for higher values. We also find that ion acceleration is lower on the flanks of the bow shock than at the subsolar point regardless of the Mach number. The observations show that a higher connection time of an upstream field line leads to somewhat higher acceleration efficiency. To complement the observations, we perform a global hybrid-Vlasov simulation with realistic solar-wind parameters with the shape and size of the bow shock. We find that the ion acceleration efficiency in the simulation shows good quantitative agreement with the MMS observations. With the combined approach of direct spacecraft observations, we quantify ion acceleration in a wide range of shock angles and Mach numbers.
  •  
16.
  • Khotyaintsev, Yu, V, et al. (författare)
  • Electron Heating by Debye-Scale Turbulence in Guide-Field Reconnection
  • 2020
  • Ingår i: Physical Review Letters. - : AMER PHYSICAL SOC. - 0031-9007 .- 1079-7114. ; 124:4
  • Tidskriftsartikel (refereegranskat)abstract
    • We report electrostatic Debye-scale turbulence developing within the diffusion region of asymmetric magnetopause reconnection with amoderate guide field using observations by the Magnetospheric Multiscale mission. We show that Buneman waves and beam modes cause efficient and fast thermalization of the reconnection electron jet by irreversible phase mixing, during which the jet kinetic energy is transferred into thermal energy. Our results show that the reconnection diffusion region in the presence of a moderate guide field is highly turbulent, and that electrostatic turbulence plays an important role in electron heating.
  •  
17.
  • Li, Wenya, et al. (författare)
  • Upper-Hybrid Waves Driven by Meandering Electrons Around Magnetic Reconnection X Line
  • 2021
  • Ingår i: Geophysical Research Letters. - : American Geophysical Union (AGU). - 0094-8276 .- 1944-8007. ; 48:16
  • Tidskriftsartikel (refereegranskat)abstract
    • Magnetic reconnection is a fundamental process in collisionless space plasma environment, and plasma waves relevant to the kinetic interactions can have a significant impact on the multiscale behavior of reconnection. Here, we present Magnetospheric Multiscale (MMS) observations during an encounter of an X line of symmetric magnetic reconnection in the magnetotail. The X line is characterized by reversals of ion and electron jets and electromagnetic fields, agyrotropic electron velocity distribution functions (VDFs), and an electron-scale current sheet. MMS observe large-amplitude nonlinear upper-hybrid (UH) waves on both sides of the neutral line, and the wave amplitudes have highly localized distribution along the normal direction. The inbound meandering electrons drive the UH waves, releasing the free energy stored from the reconnection electric field along the meandering trajectories. The interaction between the meandering electrons and the UH waves may modify the balance of the reconnection electric field around the X line. Plain Language Summary The electron-scale kinetic physics in the electron diffusion region (EDR) controls how magnetic field lines break and reconnect. Electron crescent, an indicator of EDR, can drive high-frequency electrostatic waves around EDR. For the first time, the upper-hybrid (UH) waves are observed on both sides of the X line and we show the direct association between the UH waves and the reconnection electric field. The strong wave-electron interaction can change the electron-scale dynamics and may modify the reconnection electric field. This study demonstrates that the UH waves may play an important role in controlling the reconnection rate.
  •  
18.
  • Matsui, H., et al. (författare)
  • A Multi-Instrument Study of a Dipolarization Event in the Inner Magnetosphere
  • 2021
  • Ingår i: Journal of Geophysical Research - Space Physics. - : American Geophysical Union (AGU). - 2169-9380 .- 2169-9402. ; 126:5
  • Tidskriftsartikel (refereegranskat)abstract
    • A dipolarization of the background magnetic field was observed during a conjunction of the Magnetospheric Multiscale (MMS) spacecraft and Van Allen Probe B on September 22, 2018. The spacecraft were located in the inner magnetosphere at L similar to 6-7 just before midnight magnetic local time (MLT). The radial separation between MMS and Probe B was similar to 1R(E). Gradual dipolarization or an increase of the northward component B-Z of the background field occurred on a timescale of minutes. Exploration of energization and Radiation in Geospace located 0.5 MLT eastward at a similar L shell also measured a gradual increase. The spatial scale was of the order of 1 R-E. On top of that, MMS and Probe B measured B-Z increases, and a decrease in one case, on a timescale of seconds, accompanied by large electric fields with amplitudes > several tens of mV/m. Spatial scale lengths were of the order of the ion inertial length and the ion gyroradius. The inertial term in the momentum equation and the Hall term in the generalized Ohm's law were sometimes non-negligible. These small-scale variations are discussed in terms of the ballooning/interchange instability and kinetic Alfven waves among others. It is inferred that physics of multiple scales was involved in the dynamics of this dipolarization event.
  •  
19.
  • Norgren, C., et al. (författare)
  • Electron Acceleration and Thermalization at Magnetotail Separatrices
  • 2020
  • Ingår i: Journal of Geophysical Research - Space Physics. - : American Geophysical Union (AGU). - 2169-9380 .- 2169-9402. ; 125:4
  • Tidskriftsartikel (refereegranskat)abstract
    • In this study we use the Magnetospheric Multiscale mission to investigate the electron acceleration and thermalization occurring along the magnetic reconnection separatrices in the magnetotail. We find that initially cold electron lobe populations are accelerated toward the X line forming beams with energies up to a few kiloelectron volts, corresponding to a substantial fraction of the electron thermal energy inside the exhaust. The accelerated electron populations are unstable to the formation of electrostatic waves which develop into nonlinear electrostatic solitary waves. The waves' amplitudes are large enough to interact efficiently with a large part of the electron population, including the electron beam. The wave-particle interaction gradually thermalizes the beam, transforming directed drift energy to thermal energy.
  •  
20.
  • Norgren, C., et al. (författare)
  • Millisecond observations of nonlinear wave-electron interaction in electron phase space holes
  • 2022
  • Ingår i: Physics of Plasmas. - : AIP Publishing. - 1070-664X .- 1089-7674. ; 29:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Electron phase space holes (EHs) associated with electron trapping are commonly observed as bipolar electric field signatures in both space and laboratory plasma. Until recently, it has not been possible to resolve EHs in electron measurements. We report observations of EHs in the plasma sheet boundary layer, here identified as the separatrix region of magnetic reconnection in the magnetotail. The intense EHs are observed together with an electron beam moving toward the X line, showing signs of thermalization. Using the electron drift instrument onboard the satellites of the Magnetospheric Multiscale mission, we make direct millisecond measurements of the electron particle flux associated with individual electron phase space holes. The electron flux is measured at a millisecond cadence in a narrow parallel speed range within that of the trapped electrons. The flux modulations are of order unity and are direct evidence of the strong nonlinear wave-electron interaction that may effectively thermalize beams and contribute to transforming directed drift energy to thermal energy.
  •  
21.
  • Richard, Louis, et al. (författare)
  • Observations of Short-Period Ion-Scale Current Sheet Flapping
  • 2021
  • Ingår i: Journal of Geophysical Research - Space Physics. - : American Geophysical Union (AGU). - 2169-9380 .- 2169-9402. ; 126:8
  • Tidskriftsartikel (refereegranskat)abstract
    • Kink-like flapping motions of current sheets are commonly observed in the magnetotail. Such oscillations have periods of a few minutes down to a few seconds and they propagate toward the flanks of the plasma sheet. Here, we report a short-period (T approximate to 25 s) flapping event of a thin current sheet observed by the Magnetospheric Multiscale spacecraft in the dusk-side plasma sheet following a fast Earthward plasma flow. We characterize the flapping structure using the multi-spacecraft spatiotemporal derivative and timing methods, and we find that the wave-like structure is propagating along the average current direction with a phase velocity comparable to the ion velocity. We show that the wavelength of the oscillating current sheet scales with its thickness as expected for a drift-kink mode. The decoupling of the ion bulk motion from the electron bulk motion suggests that the current sheet is thin. We discuss the presence of the lower hybrid waves associated with gradients of density as a broadening process of the thin current sheet.
  •  
22.
  • Richard, Louis, et al. (författare)
  • Proton and Helium Ion Acceleration at Magnetotail Plasma Jets
  • 2022
  • Ingår i: Journal of Geophysical Research - Space Physics. - : American Geophysical Union (AGU). - 2169-9380 .- 2169-9402. ; 127:8
  • Tidskriftsartikel (refereegranskat)abstract
    • We investigate two flow bursts in a series of Earthward bursty bulk flows (BBFs) observed by the Magnetospheric Multiscale spacecraft in Earth's magnetotail at (-24, 7, 4) R-E in Geocentric Solar Magnetospheric coordinates. At the leading edges of the BBFs, we observe complex magnetic field structures. In particular, we focus on one BBF which contains large-amplitude magnetic field fluctuations on the time scale of the proton gyroperiod, and another with a large scale dipolarization. For both events, the magnetic field structures are associated with flux increases of supra-thermal ions with energies greater than or similar to 100 keV. We observe that helium ions dominate the ion flux at energies greater than or similar to 150 keV. We investigate the ion acceleration mechanism and its dependence on the mass and charge state of H+ and He2+ ions. We show that for both events, the ions with gyroradii smaller than the dawn-dusk scale of the structure are accelerated by the ion bulk flow. For ions with larger gyroradii, the acceleration is likely due to a localized spatially limited electric field for the event with a large-scale dipolarization. For the event with fluctuating magnetic field, the acceleration of ions with gyroradii comparable with the scale of the magnetic fluctuations can be explained by resonance acceleration.
  •  
23.
  • Steinvall, Konrad, et al. (författare)
  • Large Amplitude Electrostatic Proton Plasma Frequency Waves in the Magnetospheric Separatrix and Outflow Regions During Magnetic Reconnection
  • 2021
  • Ingår i: Geophysical Research Letters. - : American Geophysical Union (AGU). - 0094-8276 .- 1944-8007. ; 48:5
  • Tidskriftsartikel (refereegranskat)abstract
    • We report Magnetospheric Multiscale observations of large amplitude, parallel, electrostatic, proton plasma frequency waves on the magnetospheric side of the reconnecting magnetopause. The waves are often found in the magnetospheric separatrix region and in the outflow near the magnetospheric ion edge. Statistical results from five months of data show that these waves are closely tied to the presence of cold (typically tens of eV) ions, found for 88% of waves near the separatrix region, and that plasma properties are consistent with ion acoustic wavegrowth. We analyze one wave event in detail, concluding that the wave is ion acoustic. We provide a simple explanation for the mechanisms leading to the development of the ion acoustic instability. These waves can be important for separatrix dynamics by heating the cold ion component and providing a mechanism to damp the kinetic Alfven waves propagating away from the reconnection site.
  •  
24.
  • Tang, B-B, et al. (författare)
  • Electron Mixing and Isotropization in the Exhaust of Asymmetric Magnetic Reconnection With a Guide Field
  • 2020
  • Ingår i: Geophysical Research Letters. - : American Geophysical Union (AGU). - 0094-8276 .- 1944-8007. ; 47:14
  • Tidskriftsartikel (refereegranskat)abstract
    • We investigate an exhaust crossing of asymmetric guide field reconnection observed by Magnetospheric Multiscale (MMS) mission at Earth's dayside magnetopause. One MMS spacecraft (MMS 4) observes multicomponent electron distributions, including two counterstreaming electron beams, while the other three MMS spacecraft, with a separation of similar to 30 km, record nearly isotropic electron distributions. As counterstreaming electrons are unstable for the electron two-stream instability, our observations suggest that the electrostatic waves generated by the fast-growing electron two-stream instability can contribute to the rapid isotropization of electron distributions in the reconnection exhaust, indicating that wave-particle interactions play an important role in electron dynamics.
  •  
25.
  • Tang, B-B, et al. (författare)
  • Lower Hybrid Waves at the Magnetosheath Separatrix Region
  • 2020
  • Ingår i: Geophysical Research Letters. - : American Geophysical Union (AGU). - 0094-8276 .- 1944-8007. ; 47:20
  • Tidskriftsartikel (refereegranskat)abstract
    • Lower hybrid waves are investigated at the magnetosheath separatrix region in asymmetric guide field reconnection by using the Magnetospheric Multiscale (MMS) mission. Three of the four MMS spacecraft observe clear wave activities around the lower hybrid frequency across the magnetosheath separatrix, where a density gradient is present. The observed waves are consistent with generation by the lower hybrid drift instability. The characteristic properties of these waves include the following: (1) the waves propagate toward the x-line in the spacecraft frame due to the large out-of-plane magnetic field, which is in the same direction of the diamagnetic drift of the x-line; (2) the wave potential is about 20% of the electron temperature. These drift waves effectively produce cross-field particle diffusion, enabling the transport of magnetosheath electrons into the exhaust region. At last, we suggest that the lower hybrid waves at the magnetosheath separatrix region represent some unique features of asymmetric guide field reconnection, which is different from that widely observed at the magnetospheric side of magnetopause reconnection. Plain Language Summary Magnetic reconnection is a fundamental process of explosive energy conversion in space, and one important unresolved issue during this process is how plasma waves impact the magnetic reconnection. Different types of waves have been found and investigated during reconnection, including kinetic Alfven waves, lower hybrid waves, whistler waves, upper hybrid waves, and parallel electrostatic waves. Among these waves, lower hybrid waves, taken as a basic feature of 3-D asymmetric reconnection, are frequently observed at the magnetospheric side. In this study, we present new observations from the Magnetospheric Multiscale (MMS) mission, showing that the lower hybrid waves can also be found at the magnetosheath separatrix in asymmetric guide field reconnection, which enable the cross-field particle diffusion from the magnetosheath to the exhaust. These results can help deepen our understanding of the roles of plasma waves in reconnection.
  •  
26.
  • Tang, B. B., et al. (författare)
  • Secondary Magnetic Reconnection at Earth's Flank Magnetopause
  • 2021
  • Ingår i: Frontiers in Astronomy and Space Sciences. - : Frontiers Media SA. - 2296-987X. ; 8
  • Tidskriftsartikel (refereegranskat)abstract
    • We report local secondary magnetic reconnection at Earth's flank magnetopause by using the Magnetospheric Multiscale observations. This reconnection is found at the magnetopause boundary with a large magnetic shear between closed magnetospheric field lines and the open field lines generated by the primary magnetopause reconnection at large scales. Evidence of this secondary reconnection are presented, which include a secondary ion jet and the encounter of the electron diffusion region. Thus the observed secondary reconnection indicates a cross-scale process from a global scale to an electron scale. As the aurora brightening is also observed at the morning ionosphere, the present secondary reconnection suggests a new pathway for the entry of the solar wind into geospace, providing an important modification to the classic Dungey cycle.
  •  
27.
  • Toledo-Redondo, S., et al. (författare)
  • Statistical Observations of Proton-Band Electromagnetic Ion Cyclotron Waves in the Outer Magnetosphere: Full Wavevector Determination
  • 2024
  • Ingår i: Journal of Geophysical Research - Space Physics. - : John Wiley and Sons Inc. - 2169-9380 .- 2169-9402. ; 129:5
  • Tidskriftsartikel (refereegranskat)abstract
    • Electromagnetic Ion Cyclotron (EMIC) waves mediate energy transfer from the solar wind to the magnetosphere, relativistic electron precipitation, or thermalization of the ring current population, to name a few. How these processes take place depends on the wave properties, such as the wavevector and polarization. However, inferring the wavevector from in-situ measurements is problematic since one needs to disentangle spatial and time variations. Using 8 years of Magnetospheric Multiscale (MMS) mission observations in the dayside magnetosphere, we present an algorithm to detect proton-band EMIC waves in the Earth's dayside magnetosphere, and find that they are present roughly 15% of the time. Their normalized frequency presents a dawn-dusk asymmetry, with waves in the dawn flank magnetosphere having larger frequency than in the dusk, subsolar, and dawn near subsolar region. It is shown that the observations are unstable to the ion cyclotron instability. We obtain the wave polarization and wavevector by comparing Single Value Decomposition and Ampere methods. We observe that for most waves the perpendicular wavenumber (k⊥) is larger than the inverse of the proton gyroradius (ρi), that is, k⊥ρi > 1, while the parallel wavenumber is smaller than the inverse of the ion gyroradius, that is, k‖ρi < 1. Left-hand polarized waves are associated with small wave normal angles (θBk < 30°), while linearly polarized waves are associated with large wave normal angles (θBk > 30°). This work constitutes, to our knowledge, the first attempt to statistically infer the full wavevector of proton-band EMIC waves observed in the outer magnetosphere.
  •  
28.
  • Vaivads, Andris, et al. (författare)
  • Cluster Observations of Energetic Electron Acceleration Within Earthward Reconnection Jet and Associated Magnetic Flux Rope
  • 2021
  • Ingår i: Journal of Geophysical Research - Space Physics. - : American Geophysical Union (AGU). - 2169-9380 .- 2169-9402. ; 126:8
  • Tidskriftsartikel (refereegranskat)abstract
    • We study acceleration of energetic electrons in an earthward plasma jet due to magnetic reconnection in the Earth magnetotail for one case observed by Cluster. The case has been selected based on the presence of high fluxes of energetic electrons, Cluster being in the burst mode and Cluster separation being around 1,000 km that is optimal for studies of ion scale physics. We show that two characteristic acceleration mechanisms are operating during this event. First, significant acceleration is achieved inside the magnetic flux pile-up of the jet, the acceleration mechanism being consistent with betatron acceleration. Second, strong energetic electron acceleration occurs in magnetic flux rope like structure forming in front of the magnetic flux pile-up region. Energetic electrons inside the magnetic flux rope are accelerated predominantly in the field-aligned direction and the acceleration can be due to Fermi acceleration in a contracting flux rope.
  •  
29.
  • Zaitsev, I., et al. (författare)
  • Cold ion energization at separatrices during magnetic reconnection
  • 2021
  • Ingår i: Physics of Plasmas. - : AIP Publishing. - 1070-664X .- 1089-7674. ; 28:3
  • Tidskriftsartikel (refereegranskat)abstract
    • Separatrices of magnetic reconnection host intense perpendicular Hall electric fields. The fields are produced by the decoupling of the ion and electron components and are associated with the in-plane electrostatic potential drop between the inflow and outflow regions. The width of these structures is typically less than the ion inertial length, which is small enough to demagnetize ions as they cross the layer. We investigate ion acceleration at separatrices by means of 2D particle-in-cell simulations of magnetic reconnection for two limiting cases: (1) a "GEM-like" setup (here GEM stands for geospace environmental modeling reconnection challenge) with the lobe ion thermal velocity equal to the thermal velocity of the initial current sheet ions, which is comparable to the Alfven velocity and (2) a "cold" ion setup, in which the temperature of the background lobe ions is 1/100 of the initial current sheet temperature. The separatrix Hall electric field is balanced by the ion inertia term in the cold background simulations. The effect is indicative of the quasi-steady local perpendicular acceleration. The electric field introduces a cross field beam of unmagnetized particles, which makes the ion distribution function strongly non-gyrotropic and susceptible to sub-ion scale instabilities. This acceleration mechanism nearly vanishes in the hot ion background simulations. Our particle-in-cell simulations are complemented by one-dimensional test particle calculations. They show that the hot ion particles experience energy-scattering after crossing the accelerating layer, whereas cold ions are uniformly energized up to the energies comparable to the electrostatic potential drop between the inflow and outflow regions.
  •  
30.
  • Boldu, J. J., et al. (författare)
  • Langmuir waves associated with magnetic holes in the solar wind
  • 2023
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 674
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. Langmuir waves (electrostatic waves near the electron plasma frequency) are often observed in the solar wind and may play a role in the energy dissipation of electrons. The largest amplitude Langmuir waves are typically associated with type II and III solar radio bursts and planetary foreshocks. In addition, Langmuir waves not related to radio bursts occur in the solar wind, but their source is not well understood. Langmuir waves have been observed inside isolated magnetic holes, suggesting that magnetic holes play an important role in the generation of Langmuir waves.Aims. We provide the statistical distribution of Langmuir waves in the solar wind at different heliocentric distances. In particular, we investigate the relationship between magnetic holes and Langmuir waves. We identify possible source regions of Langmuir waves in the solar wind, other than radio bursts, by analyzing the local plasma conditions.Methods. We analyzed data from Solar Orbiter's Radio and Plasma Waves (RPW) and Magnetometer (MAG) instruments. We used the triggered electric field snapshots and onboard statistical data (STAT) of the Time Domain Sampler (TDS) of RPW to identify Langmuir waves and investigate their properties. The plasma densities were derived from the spacecraft potential estimated by RPW. The MAG data were used to monitor the background magnetic field and detect magnetic holes, which are defined as regions with an isolated decrease in |B| of 50% or more compared to the background level. The statistical analysis was performed on data from 2020 to 2021, comprising heliocentric distances between 0.5 AU and 1 AU.Results. We show that 78% of the Langmuir waves in the solar wind not connected to radio bursts occur in regions of local magnetic field depletions, including the regions classified as isolated magnetic holes. We also show that the Langmuir waves occur more frequently inside magnetic holes than in any other region in the solar wind, which indicates that magnetic holes are important source regions of solar wind Langmuir waves. We find that Langmuir waves associated with magnetic holes in the solar wind typically have lower amplitudes than those associated with radio bursts.
  •  
31.
  • Graham, Daniel B., et al. (författare)
  • Non-Maxwellianity of Electron Distributions Near Earth's Magnetopause
  • 2021
  • Ingår i: Journal of Geophysical Research - Space Physics. - : American Geophysical Union (AGU). - 2169-9380 .- 2169-9402. ; 126:10
  • Tidskriftsartikel (refereegranskat)abstract
    • Plasmas in Earth's outer magnetosphere, magnetosheath, and solar wind are essentially collisionless. This means particle distributions are not typically in thermodynamic equilibrium and deviate significantly from Maxwellian distributions. The deviations of these distributions can be further enhanced by plasma processes, such as shocks, turbulence, and magnetic reconnection. Such distributions can be unstable to a wide variety of kinetic plasma instabilities, which in turn modify the electron distributions. In this paper, the deviation of the observed electron distributions from a bi-Maxwellian distribution function is calculated and quantified using data from the Magnetospheric Multiscale spacecraft. A statistical study from tens of millions of electron distributions shows that the primary source of the observed non-Maxwellianity is electron distributions consisting of distinct hot and cold components in Earth's low-density magnetosphere. This results in large non-Maxwellianities at low densities. However, after performing a statistical study we find regions where large non-Maxwellianities are observed for a given density. Highly non-Maxwellian distributions are routinely found at Earth's bowshock, in Earth's outer magnetosphere and in the electron diffusion regions of magnetic reconnection. Enhanced non-Maxwellianities are observed in the turbulent magnetosheath, but are intermittent and are typically not correlated with local processes. The causes of enhanced non-Maxwellianities are investigated.
  •  
32.
  • Zhang, L. Q., et al. (författare)
  • MMS Observation on the Cross-Tail Current Sheet Roll-up at the Dipolarization Front
  • 2021
  • Ingår i: Journal of Geophysical Research - Space Physics. - : American Geophysical Union (AGU). - 2169-9380 .- 2169-9402. ; 126:4
  • Tidskriftsartikel (refereegranskat)abstract
    • We perform a case study on the evolution of the current sheet in different regions around the dipolarization front (DF), including magnetic-dip preceding the DF, front at the DF, and magnetic pileup region (MPR) behind the DF based on magnetospheric multiscale (MMS) observation on July 31, 2017. In this event, MMS1 stays inside the current sheet during the whole bursty bulk flow (BBF) interval. Our analysis reveals that the cross-tail current sheet at the DF is rolled up, signified by the depression (-V-z/-B-z) at the dip and elevation (+V-z/+B-z) at the front. The minimum variance analysis on the magnetic field method is applied to obtain the normal direction of the current sheet. The result confirms the roll-up, that is, downward at the depressed current sheet and upward at the elevated current sheet. The current sheet roll-up at the DF is asymmetric, with steeper elevation than depression. The elevation angle of the elevated current sheet is evaluated to be similar to 30 degrees. Strong duskward and predominantly perpendicular J spike (similar to 90 nA/m(2)) concentrate at the interface between the dip and the front. The strength of the current of the J-spike is about nine/three times the current at the dip/front. The front is characterized by positive E center dot J. In the dip/MPR, no such preference is seen. Ion/Electron pitch angle distributions exhibit significant and different evolutions in the roll-up current sheet from dip to front, including their energy-dependence and distributions. Finally, the roll-up current sheet could decelerate BBF and change the flow structure. The potential significance of the roll-up current sheet on BBF evolution is emphasized.
  •  
33.
  • Zhong, Z. H., et al. (författare)
  • Stacked Electron Diffusion Regions and Electron Kelvin-Helmholtz Vortices within the Ion Diffusion Region of Collisionless Magnetic Reconnection
  • 2022
  • Ingår i: Astrophysical Journal Letters. - : American Astronomical Society. - 2041-8205 .- 2041-8213. ; 926:2
  • Tidskriftsartikel (refereegranskat)abstract
    • The structure of the electron diffusion region (EDR) is essential for determining how fast the magnetic energy converts to plasma energy during magnetic reconnection. Conventional knowledge of the diffusion region assumes that the EDR is a single layer embedded within the ion diffusion region (IDR). This paper reports the first observation of two EDRs that stack in parallel within an IDR by the Magnetospheric Multiscale mission. The oblique tearing modes can result in these stacked EDRs. Intense electron flow shear in the vicinity of two EDRs induced electron Kelvin-Helmholtz vortices, which subsequently generated kinetic-scale magnetic peak and holes, which may effectively trap electrons. Our analyses show that both the oblique tearing instability and electron Kelvin-Helmholtz instability are important in three-dimensional reconnection since they can control the electron dynamics and structure of the diffusion region through cross-scale coupling.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-33 av 33

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy