SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Kirshner R.) srt2:(2015-2019)"

Sökning: WFRF:(Kirshner R.) > (2015-2019)

  • Resultat 1-14 av 14
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Lunnan, Ragnhild, et al. (författare)
  • Hydrogen-poor Superluminous Supernovae from the Pan-STARRS1 Medium Deep Survey
  • 2018
  • Ingår i: Astrophysical Journal. - : American Astronomical Society. - 0004-637X .- 1538-4357. ; 852:2
  • Tidskriftsartikel (refereegranskat)abstract
    • We present light curves and classification spectra of 17 hydrogen-poor superluminous supernovae (SLSNe) from the Pan-STARRS1 Medium Deep Survey (PS1 MDS). Our sample contains all objects from the PS1. MDS sample with spectroscopic classification that are similar to either of the prototypes SN 2005ap or SN 2007bi, without an explicit limit on luminosity. With a redshift range 0.3 < z < 1.6, PS1. MDS is the first SLSN sample primarily probing the high-redshift population; our multifilter PS1 light curves probe the rest-frame UV emission, and hence the peak of the spectral energy distribution. We measure the temperature evolution and construct bolometric light curves, and find peak luminosities of (0.5-5) x 10(44) erg s(-1) and lower limits on the total radiated energies of (0.3-2) x 10(51) erg. The light curve shapes are diverse, with both rise and decline times spanning a factor of similar to 5 and several examples of double-peaked light curves. When correcting for the flux-limited nature of our survey, we find a median peak luminosity at 4000 angstrom of M-4000 = -21.1 mag and a spread of sigma = 0.7 mag.
  •  
2.
  • Lunnan, R., et al. (författare)
  • PS1-14bj : A HYDROGEN-POOR SUPERLUMINOUS SUPERNOVA WITH A LONG RISE AND SLOW DECAY
  • 2016
  • Ingår i: Astrophysical Journal. - 0004-637X .- 1538-4357. ; 831:2
  • Tidskriftsartikel (refereegranskat)abstract
    • We present photometry and spectroscopy of PS1-14bj, a hydrogen-poor superluminous supernova (SLSN) at redshift z = 0.5215 discovered in the last months of the Pan-STARRS1 Medium Deep Survey. PS1-14bj stands out because of its extremely slow evolution, with an observed rise of greater than or similar to 125 rest-frame days, and exponential decline out to similar to 250 days past peak at a measured rate of 0.01 mag day(-1), consistent with fully trapped Co-56 decay. This is the longest rise time measured in an SLSN to date, and the first SLSN to show a rise time consistent with pair-instability supernova (PISN) models. Compared to other slowly evolving SLSNe, it is spectroscopically similar to the prototype SN 2007bi at maximum light, although lower in luminosity (L-peak similar or equal to 4.6 x 10(43) erg s(-1) ) and with a flatter peak than previous events. PS1-14bj shows a number of peculiar properties, including a near-constant color temperature for > 200 days past peak, and strong emission lines from [O III] lambda 5007 and [O III] lambda 4363 with a velocity width of similar to 3400 km s(-1) in its late-time spectra. These both suggest there is a sustained source of heating over very long timescales, and are incompatible with a simple Ni-56-powered/PISN interpretation. A modified magnetar model including emission leakage at late times can reproduce the light curve, in which case the blue continuum and [O III] features are interpreted as material heated and ionized by the inner pulsar wind nebula becoming visible at late times. Alternatively, the late-time heating could be due to interaction with a shell of H-poor circumstellar material.
  •  
3.
  • Milisavljevic, D., et al. (författare)
  • METAMORPHOSIS OF SN 2014C : DELAYED INTERACTION BETWEEN A HYDROGEN POOR CORE-COLLAPSE SUPERNOVA AND A NEARBY CIRCUMSTELLAR SHELL
  • 2015
  • Ingår i: Astrophysical Journal. - 0004-637X .- 1538-4357. ; 815:2
  • Tidskriftsartikel (refereegranskat)abstract
    • We present optical observations of supernova SN 2014C, which underwent an unprecedented slow metamorphosis from H-poor type Ib to H-rich type IIn over the course of one year. The observed spectroscopic evolution is consistent with the supernova having exploded in a cavity before encountering a massive shell of the progenitor star's stripped hydrogen envelope. Possible origins for the circumstellar shell include a brief Wolf-Rayet fast wind phase that overtook a slower red supergiant wind, eruptive ejection, or confinement of circumstellar material by external influences of neighboring stars. An extended high velocity Ha absorption feature seen in near-maximum light spectra implies that the progenitor star was not completely stripped of hydrogen at the time of core collapse. Archival pre-explosion Subaru Telescope Suprime-Cam and Hubble Space Telescope Wide Field Planetary Camera. 2 images of the region obtained in 2009 show a coincident source that is most likely a compact massive star cluster in NGC 7331 that hosted the progenitor system. By comparing the emission properties of the source with stellar population models that incorporate interacting binary stars we estimate the age of the host cluster to be 30-300 Myr, and favor ages closer to 30 Myr in light of relatively strong Ha emission. SN 2014C is the best observed member of a class of core-collapse supernovae that fill the gap between events that interact strongly with dense, nearby environments immediately after explosion and those that never show signs of interaction. Better understanding of the frequency and nature of this intermediate population can contribute valuable information about the poorly understood final stages of stellar evolution.
  •  
4.
  • Scolnic, D. M., et al. (författare)
  • The Complete Light-curve Sample of Spectroscopically Confirmed SNe Ia from Pan-STARRS1 and Cosmological Constraints from the Combined Pantheon Sample
  • 2018
  • Ingår i: Astrophysical Journal. - : American Astronomical Society. - 0004-637X .- 1538-4357. ; 859:2
  • Tidskriftsartikel (refereegranskat)abstract
    • We present optical light curves, redshifts, and classifications for 365 spectroscopically confirmed Type Ia supernovae (SNe Ia) discovered by the Pan-STARRS1 (PS1) Medium Deep Survey. We detail improvements to the PS1 SN photometry, astrometry, and calibration that reduce the systematic uncertainties in the PS1 SN Ia distances. We combine the subset of 279 PS1 SNe Ia (0.03 < z < 0.68) with useful distance estimates of SNe Ia from the Sloan Digital Sky Survey (SDSS), SNLS, and various low-z and Hubble Space Telescope samples to form the largest combined sample of SNe Ia, consisting of a total of 1048 SNe Ia in the range of 0.01 < z < 2.3, which we call the Pantheon Sample. When combining Planck 2015 cosmic microwave background (CMB) measurements with the Pantheon SN sample, we find Omega(m) = 0.307 +/- 0.012 and w = -1.026 +/- 0.041 for the wCDM model. When the SN and CMB constraints are combined with constraints from BAO and local H-0 measurements, the analysis yields the most precise measurement of dark energy to date: w(0) = -1.007 +/- 0.089 and w(a) = -0.222 +/- 0.407 for the w(0)w(a) CDM model. Tension with a cosmological constant previously seen in an analysis of PS1 and low-z SNe has diminished after an increase of 2x in the statistics of the PS1 sample, improved calibration and photometry, and stricter light-curve quality cuts. We find that the systematic uncertainties in our measurements of dark energy are almost as large as the statistical uncertainties, primarily due to limitations of modeling the low-redshift sample. This must be addressed for future progress in using SNe Ia to measure dark energy.
  •  
5.
  • Hsiao, E. Y., et al. (författare)
  • Strong near-infrared carbon in the Type Ia supernova iPTF13ebh
  • 2015
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 578
  • Tidskriftsartikel (refereegranskat)abstract
    • We present near-infrared (NIR) time-series spectroscopy, as well as complementary ultraviolet (UV), optical, and NIR data, of the Type Ia supernova (SN Ia) iPTF13ebh, which was discovered within two days from the estimated time of explosion. The first NIR spectrum was taken merely 2 : 3 days after explosion and may be the earliest NIR spectrum yet obtained of a SN Ia. The most striking features in the spectrum are several NIR C I lines, and the C I lambda 1.0693 mu m line is the strongest ever observed in a SN Ia. Interestingly, no strong optical C II counterparts were found, even though the optical spectroscopic time series began early and is densely cadenced. Except at the very early epochs, within a few days from the time of explosion, we show that the strong NIR C I compared to the weaker optical C II appears to be general in SNe Ia. iPTF13ebh is a fast decliner with Delta m(15)(B) = 1.79 +/- 0.01, and its absolute magnitude obeys the linear part of the width-luminosity relation. It is therefore categorized as a transitional event, on the fast-declining end of normal SNe Ia as opposed to subluminous/91bg-like objects. iPTF13ebh shows NIR spectroscopic properties that are distinct from both the normal and subluminous/91bg-like classes, bridging the observed characteristics of the two classes. These NIR observations suggest that composition and density of the inner core are similar to that of 91bg-like events, and that it has a deep-reaching carbon burning layer that is not observed in more slowly declining SNe Ia. There is also a substantial difference between the explosion times inferred from the early-time light curve and the velocity evolution of the Si II lambda 0.6355 mu m line, implying a long dark phase of similar to 4 days.
  •  
6.
  • Abellán, F. J., et al. (författare)
  • Very Deep inside the SN 1987A Core Ejecta : Molecular Structures Seen in 3D
  • 2017
  • Ingår i: Astrophysical Journal Letters. - : Institute of Physics Publishing. - 2041-8205 .- 2041-8213. ; 842:2
  • Tidskriftsartikel (refereegranskat)abstract
    • Most massive stars end their lives in core-collapse supernova explosions and enrich the interstellar medium with explosively nucleosynthesized elements. Following core collapse, the explosion is subject to instabilities as the shock propagates outward through the progenitor star. Observations of the composition and structure of the innermost regions of a core-collapse supernova provide a direct probe of the instabilities and nucleosynthetic products. SN 1987A in the Large Magellanic Cloud is one of very few supernovae for which the inner ejecta can be spatially resolved but are not yet strongly affected by interaction with the surroundings. Our observations of SN 1987A with the Atacama Large Millimeter/submillimeter Array are of the highest resolution to date and reveal the detailed morphology of cold molecular gas in the innermost regions of the remnant. The 3D distributions of carbon and silicon monoxide (CO and SiO) emission differ, but both have a central deficit, or torus-like distribution, possibly a result of radioactive heating during the first weeks ("nickel heating"). The size scales of the clumpy distribution are compared quantitatively to models, demonstrating how progenitor and explosion physics can be constrained.
  •  
7.
  • Marion, G. H., et al. (författare)
  • Early Observations and Analysis of the Type Ia SN 2014J in M82
  • 2015
  • Ingår i: Astrophysical Journal. - 0004-637X .- 1538-4357. ; 798:1, s. 39-
  • Tidskriftsartikel (refereegranskat)abstract
    • We present optical and near infrared (NIR) observations of the nearby Type Ia SN 2014J. Seventeen optical and 23 NIR spectra were obtained from 10 days before (–10d) to 10 days after (+10d) the time of maximum B-band brightness. The relative strengths of absorption features and their patterns of development can be compared at one day intervals throughout most of this period. Carbon is not detected in the optical spectra, but we identify C I λ1.0693 in the NIR spectra. Mg II lines with high oscillator strengths have higher initial velocities than other Mg II lines. We show that the velocity differences can be explained by differences in optical depths due to oscillator strengths. The spectra of SN 2014J show that it is a normal SN Ia, but many parameters are near the boundaries between normal and high-velocity subclasses. The velocities for O I, Mg II, Si II, S II, Ca II, and Fe II suggest that SN 2014J has a layered structure with little or no mixing. That result is consistent with the delayed detonation explosion models. We also report photometric observations, obtained from –10d to +29d, in the UBVRIJH and Ksbands. The template fitting package SNooPy is used to interpret the light curves and to derive photometric parameters. UsingRV = 1.46, which is consistent with previous studies, SNooPy finds that AV = 1.80 for E(B – V)host = 1.23 ± 0.06 mag. The maximum B-band brightness of –19.19 ± 0.10 mag was reached on February 1.74 UT ± 0.13 days and the supernova has a decline parameter, Δm 15, of 1.12 ± 0.02 mag.
  •  
8.
  • Narayan, G., et al. (författare)
  • LIGHT CURVES OF 213 TYPE Ia SUPERNOVAE FROM THE ESSENCE SURVEY
  • 2016
  • Ingår i: Astrophysical Journal Supplement Series. - : American Astronomical Society. - 0067-0049 .- 1538-4365. ; 224:1
  • Tidskriftsartikel (refereegranskat)abstract
    • The ESSENCE survey discovered 213 Type Ia supernovae at redshifts 0.1 < z < 0.81 between 2002 and 2008. We present their R- and I-band photometry, measured from images obtained using the MOSAIC II camera at the CTIO Blanco, along with rapid-response spectroscopy for each object. We use our spectroscopic follow-up observations to determine an accurate, quantitative classification, and precise redshift. Through an extensive calibration program we have improved the precision of the CTIO Blanco natural photometric system. We use several empirical metrics to measure our internal photometric consistency and our absolute calibration of the survey. We assess the effect of various potential sources of systematic bias on our measured fluxes, and estimate the dominant term in the systematic error budget from the photometric calibration on our absolute fluxes is similar to 1%.
  •  
9.
  • Villar, V. A., et al. (författare)
  • Supernova Photometric Classification Pipelines Trained on Spectroscopically Classified Supernovae from the Pan-STARRS1 Medium-deep Survey
  • 2019
  • Ingår i: Astrophysical Journal. - : American Astronomical Society. - 0004-637X .- 1538-4357. ; 884:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Photometric classification of supernovae (SNe) is imperative as recent and upcoming optical time-domain surveys, such as the Large Synoptic Survey Telescope (LSST), overwhelm the available resources for spectrosopic follow-up. Here we develop a range of light curve (LC) classification pipelines, trained on 513 spectroscopically classified SNe from the Pan-STARRS1 Medium-Deep Survey (PS1-MDS): 357 Type Ia, 93 Type II, 25 Type IIn, 21 Type Ibc, and 17 Type I superluminous SNe (SLSNe). We present a new parametric analytical model that can accommodate a broad range of SN LC morphologies, including those with a plateau, and fit this model to data in four PS1 filters (g(P1)r(P1)i(P1)z(P1)). We test a number of feature extraction methods, data augmentation strategies, and machine-learning algorithms to predict the class of each SN. Our best pipelines result in approximate to 90% average accuracy, approximate to 70% average purity, and approximate to 80% average completeness for all SN classes, with the highest success rates for SNe Ia and SLSNe and the lowest for SNe Ibc. Despite the greater complexity of our classification scheme, the purity of our SN Ia classification, approximate to 95%, is on par with methods developed specifically for Type Ia versus non-Type Ia binary classification. As the first of its kind, this study serves as a guide to developing and training classification algorithms for a wide range of SN types with a purely empirical training set, particularly one that is similar in its characteristics to the expected LSST main survey strategy. Future work will implement this classification pipeline on approximate to 3000 PS1/MDS LCs that lack spectroscopic classification.
  •  
10.
  • Hsiao, E. Y., et al. (författare)
  • Carnegie Supernova Project-II : The Near-infrared Spectroscopy Program
  • 2019
  • Ingår i: Publications of the Astronomical Society of the Pacific. - : IOP Publishing. - 0004-6280 .- 1538-3873. ; 131:995
  • Tidskriftsartikel (refereegranskat)abstract
    • Shifting the focus of Type Ia supernova (SN Ia) cosmology to the near infrared (NIR) is a promising way to significantly reduce the systematic errors, as the strategy minimizes our reliance on the empirical width-luminosity relation and uncertain dust laws. Observations in the NIR are also crucial for our understanding of the origins and evolution of these events, further improving their cosmological utility. Any future experiments in the rest-frame NIR will require knowledge of the SN Ia NIR spectroscopic diversity, which is currently based on a small sample of observed spectra. Along with the accompanying paper, Phillips et al., we introduce the Carnegie Supernova Project-II (CSP-II), to follow-up nearby SNe Ia in both the optical and the NIR. In particular, this paper focuses on the CSP-II NIR spectroscopy program, describing the survey strategy, instrumental setups, data reduction, sample characteristics, and future analyses on the data set. In collaboration with the Harvard-Smithsonian Center for Astrophysics (CfA) Supernova Group, we obtained 661 NIR spectra of 157 SNe Ia. Within this sample, 451 NIR spectra of 90 SNe Ia have corresponding CSP-II follow-up light curves. Such a sample will allow detailed studies of the NIR spectroscopic properties of SNe Ia, providing a different perspective on the properties of the unburned material; the radioactive and stable nickel produced; progenitor magnetic fields; and searches for possible signatures of companion stars.
  •  
11.
  • Larsson, Josefin, et al. (författare)
  • THREE-DIMENSIONAL DISTRIBUTION OF EJECTA IN SUPERNOVA 1987A AT 10,000 DAYS
  • 2016
  • Ingår i: Astrophysical Journal. - : Institute of Physics Publishing (IOPP). - 0004-637X .- 1538-4357. ; 833:2
  • Tidskriftsartikel (refereegranskat)abstract
    • Due to its proximity, SN. 1987A offers a unique opportunity to directly observe the geometry of a stellar explosion as it unfolds. Here we present spectral and imaging observations of SN. 1987A obtained similar to 10,000 days after the explosion with HST/STIS and VLT/SINFONI at optical and near-infrared wavelengths. These observations allow us to produce the most detailed 3D map of Ha to date, the first 3D maps for [Ca II] lambda lambda 7292, 7324, [O I] lambda lambda 6300, 6364, and Mg. II lambda lambda 9218, 9244, as well as new maps for [Si I]+[Fe II] 1.644 mu m and He I 2.058 mu m. A comparison with previous observations shows that the [Si I]+[Fe II] flux and morphology have not changed significantly during the past ten years, providing evidence that this line is powered by Ti-44. The time evolution of Ha shows that it is predominantly powered by X-rays from the ring, in agreement with previous findings. All lines that have sufficient signal show a similar large-scale 3D structure, with a north-south asymmetry that resembles a broken dipole. This structure correlates with early observations of asymmetries, showing that there is a global asymmetry that extends from the inner core to the outer envelope. On smaller scales, the two brightest lines, Ha and [Si I]+[Fe II] 1.644 mu m, show substructures at the level of similar to 200-1000 km s(-1) and clear differences in their 3D geometries. We discuss these results in the context of explosion models and the properties of dust in the ejecta.
  •  
12.
  • Pan, Y. -C, et al. (författare)
  • 500 days of SN 2013dy : spectra and photometry from the ultraviolet to the infrared
  • 2015
  • Ingår i: Monthly notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 452:4, s. 4307-4325
  • Tidskriftsartikel (refereegranskat)abstract
    • SN 2013dy is a Type Ia supernova (SN Ia) for which we have compiled an extraordinary data set spanning from 0.1 to similar to 500 d after explosion. We present 10 epochs of ultraviolet (UV) through near-infrared (NIR) spectra with Hubble Space Telescope/Space Telescope Imaging Spectrograph, 47 epochs of optical spectra (15 of them having high resolution), and more than 500 photometric observations in the BVrRiIZYJH bands. SN 2013dy has a broad and slowly declining light curve (Delta m(15)(B)= 0.92 mag), shallow Si II lambda 6355 absorption, and a low velocity gradient. We detect strong C II in our earliest spectra, probing unburned progenitor material in the outermost layers of the SN ejecta, but this feature fades within a few days. The UV continuum of SN 2013dy, which is strongly affected by the metal abundance of the progenitor star, suggests that SN 2013dy had a relatively high-metallicity progenitor. Examining one of the largest single set of high-resolution spectra for an SN Ia, we find no evidence of variable absorption from circumstellar material. Combining our UV spectra, NIR photometry, and high-cadence optical photometry, we construct a bolometric light curve, showing that SN 2013dy had a maximum luminosity of 10.0(-3.8)(+4.8) x 10(42) erg s(-1). We compare the synthetic light curves and spectra of several models to SN 2013dy, finding that SN 2013dy is in good agreement with a solar-metallicity W7 model.
  •  
13.
  • Larsson, Josefin, et al. (författare)
  • The Matter Beyond the Ring : The Recent Evolution of SN 1987A Observed by the Hubble Space Telescope
  • 2019
  • Ingår i: Astrophysical Journal. - : IOP PUBLISHING LTD. - 0004-637X .- 1538-4357. ; 886:2
  • Tidskriftsartikel (refereegranskat)abstract
    • The nearby SN 1987A offers a spatially resolved view of the evolution of a young supernova (SN) remnant. Here we present recent Hubble Space Telescope imaging observations of SN 1987A, which we use to study the evolution of the ejecta, the circumstellar equatorial ring (ER), and the increasing emission from material outside the ER. We find that the inner ejecta have been brightening at a gradually slower rate and that the western side has been brighter than the eastern side since similar to 7000 days. This is expected given that the X-rays from the ER are most likely powering the ejecta emission. At the same time, the optical emission from the ER continues to fade linearly with time. The ER is expanding at 680 50 km s(-1), which reflects the typical velocity of transmitted shocks in the dense hot spots. A dozen spots and a rim of diffuse H alpha emission have appeared outside the ER since 9500 days. The new spots are more than an order of magnitude fainter than the spots in the ER and also fade faster. We show that the spots and diffuse emission outside the ER may be explained by fast ejecta interacting with high-latitude material that extends from the ER toward the outer rings. Further observations of this emission will make it possible to determine the detailed geometry of the high-latitude material and provide insight into the formation of the rings and the mass-loss history of the progenitor.
  •  
14.
  • Ashall, C., et al. (författare)
  • Carnegie Supernova Project-II : Using Near-infrared Spectroscopy to Determine the Location of the Outer Ni-56 in Type Ia Supernovae
  • 2019
  • Ingår i: Astrophysical Journal Letters. - : American Astronomical Society. - 2041-8205 .- 2041-8213. ; 875:2
  • Tidskriftsartikel (refereegranskat)abstract
    • We present the H-band wavelength region of 37 postmaximum light near-infrared spectra of three normal, nine transitional, and four subluminous type. Ia supernovae (SNe Ia), extending from +5. days to +20. days relative to the epoch of B-band maximum. We introduce a new observable, the blue-edge velocity, v(edge), of the prominent Fe/Co/Ni-peak H-band emission feature, which is quantitatively measured. The v(edge) parameter is found to decrease over subtype ranging from around -14,000 km s(-1) for normal SNe Ia, to -10,000 km s(-1) for transitional SNe. Ia, down to -5000 km s(-1) for the subluminous SNe. Ia. Furthermore, inspection of the +10 +/- 3 days spectra indicates that v(edge) is correlated with the color-stretch parameter, s(BV), and hence with peak luminosity. These results follow the previous findings that brighter SNe. Ia tend to have Ni-56 located at higher velocities as compared to subluminous objects. As v(edge) is a model-independent parameter, we propose it can be used in combination with traditional observational diagnostics to provide a new avenue to robustly distinguish between leading SNe. Ia explosion models.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-14 av 14

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy