SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Klimov V V) srt2:(2005-2009)"

Search: WFRF:(Klimov V V) > (2005-2009)

  • Result 1-7 of 7
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Aamodt, K., et al. (author)
  • The ALICE experiment at the CERN LHC
  • 2008
  • In: Journal of Instrumentation. - 1748-0221. ; 3:S08002
  • Research review (peer-reviewed)abstract
    • ALICE (A Large Ion Collider Experiment) is a general-purpose, heavy-ion detector at the CERN LHC which focuses on QCD, the strong-interaction sector of the Standard Model. It is designed to address the physics of strongly interacting matter and the quark-gluon plasma at extreme values of energy density and temperature in nucleus-nucleus collisions. Besides running with Pb ions, the physics programme includes collisions with lighter ions, lower energy running and dedicated proton-nucleus runs. ALICE will also take data with proton beams at the top LHC energy to collect reference data for the heavy-ion programme and to address several QCD topics for which ALICE is complementary to the other LHC detectors. The ALICE detector has been built by a collaboration including currently over 1000 physicists and engineers from 105 Institutes in 30 countries, Its overall dimensions are 16 x 16 x 26 m(3) with a total weight of approximately 10 000 t. The experiment consists of 18 different detector systems each with its own specific technology choice and design constraints, driven both by the physics requirements and the experimental conditions expected at LHC. The most stringent design constraint is to cope with the extreme particle multiplicity anticipated in central Pb-Pb collisions. The different subsystems were optimized to provide high-momentum resolution as well as excellent Particle Identification (PID) over a broad range in momentum, up to the highest multiplicities predicted for LHC. This will allow for comprehensive studies of hadrons, electrons, muons, and photons produced in the collision of heavy nuclei. Most detector systems are scheduled to be installed and ready for data taking by mid-2008 when the LHC is scheduled to start operation, with the exception of parts of the Photon Spectrometer (PHOS), Transition Radiation Detector (TRD) and Electro Magnetic Calorimeter (EMCal). These detectors will be completed for the high-luminosity ion run expected in 2010. This paper describes in detail the detector components as installed for the first data taking in the summer of 2008.
  •  
2.
  • Fraerman, A. A., et al. (author)
  • Magnetic force microscopy of helical states in multilayer nanomagnets
  • 2008
  • In: Journal of Applied Physics. - : AIP Publishing. - 0021-8979 .- 1089-7550. ; 103:7, s. 073916-
  • Journal article (peer-reviewed)abstract
    • We have used magnetic force microscopy (MFM) to investigate noncollinear helical states in multilayer nanomagnets, consisting of a stack of single domain ferromagnetic disks separated by insulating nonmagnetic spacers. The nanomagnets were fabricated from a [Co/Si]x3 multilayer thin film structure by electron beam lithography and ion beam etching. The structural parameters (Co layer and spacer thicknesses) were optimized to obtain a clear spiral signature in the MFM contrast, taking into account the magnetostatic interaction between the layers. MFM contrast corresponding to the helical states with different helicities was observed for the optimized structure with Co layer thicknesses of 16, 11, and 8 nm, and with 3 nm Si spacer thickness.
  •  
3.
  • Ovsyannikov, Gennady, 1948, et al. (author)
  • Magnetotransport characteristics of strained La0.7Sr0.3MnO3 epitaxial manganite films
  • 2009
  • In: Journal of Experimental and Theoretical Physics. - 1090-6509 .- 1063-7761. ; 108:1, s. 48-55
  • Journal article (peer-reviewed)abstract
    • The electrical and magnetic characteristics of La0.7Sr0.3MnO3 (LSMO) epitaxial manganite films are investigated by different methods under conditions when the crystal structure is strongly strained as a result of mismatch between the lattice parameters of the LSMO crystal and the substrate. Substrates with lattice parameters larger and smaller than the nominal lattice parameter of the LSMO crystal are used in experiments. It is shown that the behavior of the temperature dependence of the electrical resistance for the films in the low-temperature range does not depend on the strain of the film and agrees well with the results obtained from the calculations with allowance made for the interaction of electrons with magnetic excitations in the framework of the double-exchange model for systems with strongly correlated electronic states. Investigations of the magneto- optical Kerr effect have revealed that an insignificant (0.3%) orthorhombic distortion of the cubic lattice in the plane of the NdGaO3(110) substrate leads to uniaxial anisotropy of the magnetization of the film, with the easy-magnetization axis lying in the substrate plane. However, LSMO films on substrates (((LaAlO3)(0.3)+(Sr2AlTaO6)(0.7))(001)) ensuring minimum strain of the films exhibit a biaxial anisotropy typical of cubic crystals. The study of the ferromagnetic resonance lines at a frequency of 9.76 GHz confirms the results of magnetooptical investigations and indicates that the ferromagnetic phase in the LSMO films is weakly inhomogeneous.
  •  
4.
  •  
5.
  • Savin, S., et al. (author)
  • High energy jets in the Earth's magnetosheath : Implications for plasma dynamics and anomalous transport
  • 2008
  • In: JETP Letters. - 0021-3640 .- 1090-6487. ; 87:11, s. 593-599
  • Journal article (peer-reviewed)abstract
    • High energy density Jets in the magnetosheath near the Earth magnetopause were observed by Interball-1 [1]. In this paper, we continue the investigation of this important physical phenomenon. New data provided by Cluster show that the magnetosheath kinetic energy density during more than one hour exhibits an average level and a series of peaks far exceeding the kinetic energy density in the undisturbed solar wind. This is a surprising finding because the kinetic energy of the upstream solar wind in equilibrium should be significantly diminished downstream in the magnetosheath due to plasma braking and thermalization at the bow shock. We suggest resolving the energy conservation problem by the fact that the nonequilibrium Jets appear to be locally superimposed on the background equilibrium magnetosheath, and, thus, the energy balance should be settled globally on the spatial scales of the entire dayside magnetosheath. We show that both the Cluster and Interball jets are accompanied by plasma superdiffusion and suggest that they are important for the energy dissipation and plasma transport. The character of the Jet-related turbulence strongly differs From that of known standard cascade models. We infer that these Jets may represent the phenomenon of the general physical occurrence observed in other natural systems, such as heliosphere, astrophysical, and fusion plasmas [2-10].
  •  
6.
  •  
7.
  • Shutova, Tatiana, 1964-, et al. (author)
  • The photosystem II-associated Cah3 in Chlamydomonas enhances the O-2 evolution rate by proton removal
  • 2008
  • In: EMBO Journal. - : Wiley. - 0261-4189 .- 1460-2075. ; 27:5, s. 782-791
  • Journal article (peer-reviewed)abstract
    • Water oxidation in photosystem II ( PSII) is still insufficiently understood and is assumed to involve HCO3-. A Chlamydomonas mutant lacking a carbonic anhydrase associated with the PSII donor side shows impaired O-2 evolution in the absence of HCO3-. The O-2 evolution for saturating, continuous illumination (R-O2) was slower than in the wild type, but was elevated by HCO3- and increased further by Cah3. The R-O2 limitation in the absence of Cah3/HCO3- was amplified by H2O/D2O exchange, but relieved by an amphiphilic proton carrier, suggesting a role of Cah3/HCO3- in proton translocation. Chlorophyll fluorescence indicates a Cah3/HCO3- effect at the donor side of PSII. Time-resolved delayed fluorescence and O-2-release measurements suggest specific effects on proton-release steps but not on electron transfer. We propose that Cah3 promotes proton removal from the Mn complex by locally providing HCO3-, which may function as proton carrier. Without Cah3, proton removal could become rate limiting during O-2 formation and thus, limit water oxidation under high light. Our results underlie the general importance of proton release at the donor side of PSII during water oxidation.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-7 of 7

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view