SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Knoll G) srt2:(2020-2024)"

Sökning: WFRF:(Knoll G) > (2020-2024)

  • Resultat 1-8 av 8
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  • Herbst, SA, et al. (författare)
  • Proteogenomics refines the molecular classification of chronic lymphocytic leukemia
  • 2022
  • Ingår i: Nature communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 13:1, s. 6226-
  • Tidskriftsartikel (refereegranskat)abstract
    • Cancer heterogeneity at the proteome level may explain differences in therapy response and prognosis beyond the currently established genomic and transcriptomic-based diagnostics. The relevance of proteomics for disease classifications remains to be established in clinically heterogeneous cancer entities such as chronic lymphocytic leukemia (CLL). Here, we characterize the proteome and transcriptome alongside genetic and ex-vivo drug response profiling in a clinically annotated CLL discovery cohort (n = 68). Unsupervised clustering of the proteome data reveals six subgroups. Five of these proteomic groups are associated with genetic features, while one group is only detectable at the proteome level. This new group is characterized by accelerated disease progression, high spliceosomal protein abundances associated with aberrant splicing, and low B cell receptor signaling protein abundances (ASB-CLL). Classifiers developed to identify ASB-CLL based on its characteristic proteome or splicing signature in two independent cohorts (n = 165, n = 169) confirm that ASB-CLL comprises about 20% of CLL patients. The inferior overall survival in ASB-CLL is also independent of both TP53- and IGHV mutation status. Our multi-omics analysis refines the classification of CLL and highlights the potential of proteomics to improve cancer patient stratification beyond genetic and transcriptomic profiling.
  •  
3.
  •  
4.
  •  
5.
  • Hrycik, Allison R., et al. (författare)
  • Earlier winter/spring runoff and snowmelt during warmer winters lead to lower summer chlorophyll-a in north temperate lakes
  • 2021
  • Ingår i: Global Change Biology. - : John Wiley & Sons. - 1354-1013 .- 1365-2486. ; 27:19, s. 4615-4629
  • Tidskriftsartikel (refereegranskat)abstract
    • Winter conditions, such as ice cover and snow accumulation, are changing rapidly at northern latitudes and can have important implications for lake processes. For example, snowmelt in the watershed—a defining feature of lake hydrology because it delivers a large portion of annual nutrient inputs—is becoming earlier. Consequently, earlier and a shorter duration of snowmelt are expected to affect annual phytoplankton biomass. To test this hypothesis, we developed an index of runoff timing based on the date when 50% of cumulative runoff between January 1 and May 31 had occurred. The runoff index was computed using stream discharge for inflows, outflows, or for flows from nearby streams for 41 lakes in Europe and North America. The runoff index was then compared with summer chlorophyll-a (Chl-a) concentration (a proxy for phytoplankton biomass) across 5–53 years for each lake. Earlier runoff generally corresponded to lower summer Chl-a. Furthermore, years with earlier runoff also had lower winter/spring runoff magnitude, more protracted runoff, and earlier ice-out. We examined several lake characteristics that may regulate the strength of the relationship between runoff timing and summer Chl-a concentrations; however, our tested covariates had little effect on the relationship. Date of ice-out was not clearly related to summer Chl-a concentrations. Our results indicate that ongoing changes in winter conditions may have important consequences for summer phytoplankton biomass and production.
  •  
6.
  • Hu, Y., et al. (författare)
  • Fuzzy Adaptive Control-based Real-time Obstacle Avoidance under Uncertain Perturbations
  • 2020
  • Ingår i: Proceedings ICARM 2020 - 2020 5th IEEE International Conference on Advanced Robotics and Mechatronics. - : Institute of Electrical and Electronics Engineers (IEEE). ; , s. 50-55
  • Konferensbidrag (refereegranskat)abstract
    • Dynamic Movement Primitives (DMPs) framework is a powerful approach to imitate motor skills, which has outstanding characteristics, such as convergence to the goal position and good imitation performance. Considering complex motion scenes of manipulators, such as changing the goal position or adding obstacles, the original DMPs framework is not sufficient for the requirements. In this paper, we propose a learning control-based hierarchical control strategy to adapt to new goal positions and avoid obstacles: the high-level learning scheme is targeted at imitating the motor skill and generating the optimization trajectory for obstacle avoidance; the lower-level control scheme focuses on the safety and stability of the robot's movement with unknown disturbances. Firstly, the enhanced DMPs framework is presented to imitate the trajectory from human demonstrations, where the novel DMPs can adapt to new goal position with the changing goal, and avoid single or multiple obstacles. Then, the fuzzy adaptive control method is employed to control redundant manipulators, where the fuzzy logic system (FLS) is incorporated to approximate an unknown nonlinear function term of the unknown disturbance. Finally, the effectiveness of the proposed learning-control strategy is demonstrated with simulation results. The results show that the developed hierarchical strategy has good performance for new goal adaptation and obstacle avoidance.
  •  
7.
  •  
8.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-8 av 8

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy