SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Knudsen Kirsten 1976) srt2:(2020-2024)"

Sökning: WFRF:(Knudsen Kirsten 1976) > (2020-2024)

  • Resultat 1-33 av 33
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Yang, Chentao, 1988, et al. (författare)
  • SUNRISE: The rich molecular inventory of high-redshift dusty galaxies revealed by broadband spectral line surveys
  • 2023
  • Ingår i: Astronomy and Astrophysics. - 0004-6361 .- 1432-0746. ; 680
  • Tidskriftsartikel (refereegranskat)abstract
    • Understanding the nature of high-redshift dusty galaxies requires a comprehensive view of their interstellar medium (ISM) and molecular complexity. However, the molecular ISM at high redshifts is commonly studied using only a few species beyond 12C16O, limiting our understanding. In this paper, we present the results of deep 3 mm spectral line surveys using the NOrthern Extended Millimeter Array (NOEMA) targeting two strongly lensed dusty galaxies observed when the Universe was less than 1.8 Gyr old: APM 08279+5255, a quasar at redshift z = 3.911, and NCv1.143 (H-ATLAS J125632.7+233625), a z = 3.565 starburst galaxy. The spectral line surveys cover rest-frame frequencies from about 330 to 550 GHz for both galaxies. We report the detection of 38 and 25 emission lines in APM 08279+5255 and NCv1.143, respectively. These lines originate from 17 species, namely CO, 13CO, C18O, CN, CCH, HCN, HCO+, HNC, CS, C34S, H2O, H3O+, NO, N2H+, CH, c-C3H2, and the vibrationally excited HCN and neutral carbon. The spectra reveal the chemical richness and the complexity of the physical properties of the ISM. By comparing the spectra of the two sources and combining the analysis of the molecular gas excitation, we find that the physical properties and the chemical imprints of the ISM are different: the molecular gas is more excited in APM 08279+5255, which exhibits higher molecular gas temperatures and densities compared to NCv1.143; the molecular abundances in APM 08279+5255 are akin to the values of local active galactic nuclei (AGN), showing boosted relative abundances of the dense gas tracers that might be related to high-temperature chemistry and/or the X-ray-dominated regions, while NCv1.143 more closely resembles local starburst galaxies. The most significant differences between the two sources are found in H2O: the 448 GHz ortho-H2O(423 - 330) line is significantly brighter in APM 08279+5255, which is likely linked to the intense far-infrared radiation from the dust powered by AGN. Our astrochemical model suggests that, at such high column densities, far-ultraviolet radiation is less important in regulating the ISM, while cosmic rays (and/or X-rays and shocks) are the key players in shaping the molecular abundances and the initial conditions of star formation. Both our observed CO isotopologs line ratios and the derived extreme ISM conditions (high gas temperatures, densities, and cosmic-ray ionization rates) suggest the presence of a top-heavy stellar initial mass function. From the ~330-550 GHz continuum, we also find evidence of nonthermal millimeter flux excess in APM 08279+5255 that might be related to the central supermassive black hole. Such deep spectral line surveys open a new window into the physics and chemistry of the ISM and the radiation field of galaxies in the early Universe.
  •  
2.
  • Akins, Hollis B., et al. (författare)
  • ALMA Reveals Extended Cool Gas and Hot Ionized Outflows in a Typical Star-forming Galaxy at Z=7.13
  • 2022
  • Ingår i: Astrophysical Journal. - : American Astronomical Society. - 1538-4357 .- 0004-637X. ; 934:1
  • Tidskriftsartikel (refereegranskat)abstract
    • We present spatially resolved morphological properties of [C II] 158 mu m, [O III] 88 mu m, dust, and rest-frame ultraviolet (UV) continuum emission for A1689-zD1, a strongly lensed, sub-L* galaxy at z = 7.13, by utilizing deep Atacama Large Millimeter/submillimeter Array (ALMA) and Hubble Space Telescope (HST) observations. While the [O III] line and UV continuum are compact, the [C II] line is extended up to a radius of r similar to 12 kpc. Using multi-band rest-frame far-infrared continuum data ranging from 52 to 400 mu m, we find an average dust temperature and emissivity index of Tdust=41-14+17 beta=1.7-0.7+1.1 6 galaxies.
  •  
3.
  • Bakx, Tom J.L.C., et al. (författare)
  • Accurate dust temperature determination in a z = 7.13 galaxy
  • 2021
  • Ingår i: Monthly Notices of the Royal Astronomical Society: Letters. - : Oxford University Press (OUP). - 1745-3925 .- 1745-3933. ; 508:1, s. L58-L63
  • Tidskriftsartikel (refereegranskat)abstract
    • We report ALMA Band 9 continuum observations of the normal, dusty star-forming galaxy A1689-zD1 at z = 7.13, resulting in a ∼4.6 σ detection at 702 GHz. For the first time, these observations probe the far-infrared spectrum shortward of the emission peak of a galaxy in the Epoch of Reionization (EoR). Together with ancillary data from earlier works, we derive the dust temperature, Td, and mass, Md, of A1689-zD1 using both traditional modified blackbody spectral energy density fitting, and a new method that relies only on the [C ii] 158 μm line and underlying continuum data. The two methods give Td = (42+13-7, 40+13-) K, and Md} = (1.7+1.3-0.7, 2.0+1.8-1.0), ×, 107, M⊙. Band 9 observations improve the accuracy of the dust temperature (mass) estimate by ∼50 per cent (6 times). The derived temperatures confirm the reported increasing Td-redshift trend between z = 0 and 8; the dust mass is consistent with a supernova origin. Although A1689-zD1 is a normal UV-selected galaxy, our results, implying that ∼85 per cent of its star-formation rate is obscured, underline the non-negligible effects of dust in EoR galaxies.
  •  
4.
  • Béthermin, Matthieu, et al. (författare)
  • CONCERTO: High-fidelity simulation of millimeter line emissions of galaxies and [CII] intensity mapping
  • 2022
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 667
  • Tidskriftsartikel (refereegranskat)abstract
    • The intensity mapping of the [CII] 158-μm line redshifted to the submillimeter window is a promising probe of the za>4 star formation and its spatial distribution into large-scale structures. To prepare the first-generation experiments (e.g., CONCERTO), we need realistic simulations of the submillimeter extragalactic sky in spectroscopy. We present a new version of the simulated infrared dusty extragalactic sky (SIDES) model including the main submillimeter lines around 1 mm (CO, [CII], [CI]). This approach successfully reproduces the observed line luminosity functions. We then use our simulation to generate CONCERTO-like cubes (125-305 GHz) and forecast the power spectra of the fluctuations caused by the various astrophysical components at those frequencies. Depending on our assumptions on the relation between the star formation rate and [CII] luminosity, and the star formation history, our predictions of the za∼6 [CII] power spectrum vary by two orders of magnitude. This highlights how uncertain the predictions are and how important future measurements will be to improve our understanding of this early epoch. SIDES can reproduce the CO shot noise recently measured at a4;100 GHz by the millimeter-wavelength intensity mapping experiment (mmIME). Finally, we compare the contribution of the different astrophysical components at various redshifts to the power spectra. The continuum is by far the brightest, by a factor of three to 100, depending on the frequency. At 300 GHz, the CO foreground power spectrum is higher than the [CII] one for our base scenario. At lower frequencies, the contrast between [CII] and extragalactic foregrounds is even worse. Masking the known galaxies from deep surveys should allow us to reduce the foregrounds to 20% of the [CII] power spectrum up to z∼ 6.5. However, this masking method will not be sufficient at higher redshifts. The code and the products of our simulation are released publicly, and can be used for both intensity mapping experiments and submillimeter continuum and line surveys.
  •  
5.
  • Caputi, K. I., et al. (författare)
  • ALMA Lensing Cluster Survey: An ALMA Galaxy Signposting a MUSE Galaxy Group at z=4.3 Behind "El Gordo"
  • 2021
  • Ingår i: Astrophysical Journal. - : American Astronomical Society. - 1538-4357 .- 0004-637X. ; 908:2
  • Tidskriftsartikel (refereegranskat)abstract
    • We report the discovery of a Multi Unit Spectroscopic Explorer (MUSE) galaxy group at z = 4.32 lensed by the massive galaxy cluster ACT-CL J0102-4915 (aka El Gordo) at z = 0.87, associated with a 1.2 mm source that is at a 2.07 0.88 kpc projected distance from one of the group galaxies. Three images of the whole system appear in the image plane. The 1.2 mm source has been detected within the Atacama Large Millimetre/submillimetre Array (ALMA) Lensing Cluster Survey (ALCS). As this ALMA source is undetected at wavelengths lambda < 2 mu m, its redshift cannot be independently determined, however, the three lensing components indicate that it belongs to the same galaxy group at z = 4.32. The four members of the MUSE galaxy group have low to intermediate stellar masses (similar to 10(7)-10(10) M) and star formation rates (SFRs) of 0.4-24 M yr(-1), resulting in high specific SFRs (sSFRs) for two of them, which suggest that these galaxies are growing fast (with stellar mass doubling times of only similar to 2 x 10(7) yr). This high incidence of starburst galaxies is likely a consequence of interactions within the galaxy group, which is compact and has high velocity dispersion. Based on the magnification-corrected sub-/millimeter continuum flux density and estimated stellar mass, we infer that the ALMA source is classified as an ordinary ultra-luminous infrared galaxy (with associated dust-obscured SFR similar to 200-300 M yr(-1)) and lies on the star formation main sequence. This reported case of an ALMA/MUSE group association suggests that some presumably isolated ALMA sources are in fact signposts of richer star-forming environments at high redshifts.
  •  
6.
  • da Cunha, E., et al. (författare)
  • Measurements of the Dust Properties in z similar or equal to 1-3 Submillimeter Galaxies with ALMA
  • 2021
  • Ingår i: Astrophysical Journal. - : American Astronomical Society. - 1538-4357 .- 0004-637X. ; 919:1
  • Tidskriftsartikel (refereegranskat)abstract
    • We present Atacama Large Millimeter/submillimeter Array (ALMA) 2 mm continuum observations of a complete and unbiased sample of 99 870 mu m selected submillimeter galaxies (SMGs) in the Extended Chandra Deep Field South (ALESS). Our observations of each SMG reach average sensitivities of 53 mu Jy beam(-1). We measure the flux densities for 70 sources, for which we obtain a typical 870 mu m-to-2 mm flux ratio of 14 +/- 5. We do not find a redshift dependence of this flux ratio, which would be expected if the dust emission properties of our SMGs were the same at all redshifts. By combining our ALMA measurements with existing Herschel/SPIRE observations, we construct a (biased) subset of 27 galaxies for which the cool dust emission is sufficiently well sampled to obtain precise constraints on their dust properties using simple isothermal models. Thanks to our new 2 mm observations, the dust emissivity index is well constrained and robust against different dust opacity assumptions. The median dust emissivity index of our SMGs is beta similar or equal to 1.9 +/- 0.4, consistent with the emissivity index of dust in the Milky Way and other local and high-redshift galaxies, as well as classical dust-grain model predictions. We also find a negative correlation between the dust temperature and beta, similar to low-redshift observational and theoretical studies. Our results indicate that beta similar or equal to 2 in high-redshift dusty star-forming galaxies, implying little evolution in dust-grain properties between our SMGs and local dusty galaxy samples, and suggesting that these high-mass and high-metallicity galaxies have dust reservoirs driven by grain growth in their interstellar medium.
  •  
7.
  • Fan, Lulu, et al. (författare)
  • The Hyperluminous, Dust-obscured Quasar W2246-0526 at z=4.6: Detection of Parsec-scale Radio Activity
  • 2020
  • Ingår i: Astrophysical Journal Letters. - : American Astronomical Society. - 2041-8213 .- 2041-8205. ; 905:2
  • Tidskriftsartikel (refereegranskat)abstract
    • WISE J224607.56-052634.9 (W2246-0526) is a hyperluminous (L-bol 1.7 x 10(14) L), dust-obscured, and radio-quiet quasar at redshift z = 4.6. It plays a key role in probing the transition stage between dusty starbursts and unobscured quasars in the coevolution of galaxies and supermassive black holes (SMBHs). To search for the evidence of the jet activity launched by the SMBH in W2246-0526, we performed very long baseline interferometry observations of its radio counterpart with the European VLBI Network (EVN) plus the enhanced Multi Element Remotely Linked Interferometer Network (e-MERLIN) at 1.66 GHz and the Very Long Baseline Array (VLBA) at 1.44 and 1.66 GHz. The deep EVN plus e-MERLIN observations detect a compact (size <= 32 pc) sub-mJy component contributing about 10% of its total flux density, which spatially coincides with the peak of dust continuum and [C II] emissions. Together with its relatively high brightness temperature ( >= 8 x 10(6) K), we interpret the component as a consequence of nonthermal radio activity powered by the central SMBH, which likely originates from a stationary jet base. The resolved-out radio emission possibly come from a diffuse jet, quasar-driven winds, or both, while the contribution by star formation activity is negligible. Moreover, we propose an updated geometry structure of its multiwavelength active nucleus and shed light on the radio quasar selection bias toward the blazars at z > 4.
  •  
8.
  • Fogasy, Judit, 1988, et al. (författare)
  • ALMA detects molecular gas in the halo of the powerful radio galaxy TXS 0828+193
  • 2021
  • Ingår i: Monthly Notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 501:4, s. 5973-5980
  • Tidskriftsartikel (refereegranskat)abstract
    • Both theoretical and observational results suggest that high-redshift radio galaxies (HzRGs) inhabit overdense regions of the universe and might be the progenitors of local, massive galaxies residing in the centre of galaxy clusters. In this paper, we present CO(3-2) line observations of the HzRG TXS 0828+193 (z = 2.57) and its environment using the Atacama Large Millimeter/submillimeter Array. In contrast to previous observations, we detect CO emission associated with the HzRG and derive a molecular gas mass of $(0.9\pm 0.3)\times 10^{10}\, \rm M_{\odot }$. Moreover, we confirm the presence of a previously detected off-source CO emitting region (companion #1), and detect three new potential companions. The molecular gas mass of each companion is comparable to that of the HzRG. Companion #1 is aligned with the axis of the radio jet and has stellar emission detected by Spitzer. Thus, this source might be a normal star-forming galaxy or alternatively a result of jet-induced star formation. The newly found CO sources do not have counterparts in any other observing band and could be high-density clouds in the halo of TXS 0828+193 and thus potentially linked to the large-scale filamentary structure of the cosmic web.
  •  
9.
  • Fogasy, Judit, 1988, et al. (författare)
  • SMM J04135+10277: a distant QSO-starburst system caught by ALMA
  • 2020
  • Ingår i: Monthly Notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 493:3, s. 3744-3756
  • Tidskriftsartikel (refereegranskat)abstract
    • The gas content of galaxies is a key factor for their growth, starting from star formation and black hole accretion to galaxy mergers. Thus, characterizing its properties through observations of tracers like the CO emission line is of big importance in order to understand the bigger picture of galaxy evolution. We present Atacama Large Millimeter/submillimeter Array (ALMA) observations of dust continuum, CO(5-4) and CO(8-7) line emission in the quasar-star-forming companion system SMM J04135+10277 (z = 2.84). Earlier low-J CO studies of this system found a huge molecular gas reservoir associated with the companion galaxy, while the quasar appeared gas-poor. Our CO observations revealed that the host galaxy of the quasar is also gas-rich, with an estimated molecular gas mass of ∼ (0.7-2.3)× 10^{10} M_{☉}. The CO line profiles of the companion galaxy are very broad (∼ 1000 km s^{-1}), and show signs of rotation of a compact, massive system. In contrast to previous far-infrared observations, we resolve the continuum emission and detect both sources, with the companion galaxy dominating the dust continuum and the quasar having a ∼ 25{{ per cent}} contribution to the total dust emission. By fitting the infrared spectral energy distribution of the sources with MR-MOOSE and empirical templates, the infrared luminosities of the quasar and the companion are in the range of L_{IR, QSO}∼ (2.1-9.6)× 10^{12} L_{☉} and L_{IR, Comp.}∼ (2.4-24)× 10^{12} L_{☉}, while the estimated star formation rates are ∼ 210-960 and ∼ 240-2400 M_{☉} yr^{-1}, respectively. Our results demonstrate that non-detection of low-J CO transition lines in similar sources does not necessarily imply the absence of massive molecular gas reservoir but that the excitation conditions favour the excitation of high-J transitions.
  •  
10.
  • Fogasy, Judit, 1988, et al. (författare)
  • VLA detects CO(1 0) emission in the z = 3.65 quasar SDSS J160705+533558
  • 2022
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 660
  • Tidskriftsartikel (refereegranskat)abstract
    • We present CO(1 0) observations of the high-redshift quasar SDSS J160705+533558 (z=3.653) using the Karl G. Jansky Very Large Array (VLA). We detect CO emission associated with the quasar and at ∼16.8 kpc projected distance from it, separated by ∼800kmas-1 in velocity. The total molecular gas mass of this system is ∼5×1010 M˙. By comparing our CO detections with previous submillimetre (submm) observations of the source, an offset between the different emission components is revealed: the peak of the submm emission is offset from the quasar and from the CO companion detected in our VLA data. To explain our findings, we propose a scenario similar to that for the Antennae galaxies: SDSS J160705+533558 might be a merger system in which the quasar and the CO companion are the merging galaxies, whose interaction resulted in the formation of a dusty, star-forming overlap region between the galaxies that is dominant at the submm wavelengths.
  •  
11.
  • Fujimoto, Seiji, et al. (författare)
  • ALMA Lensing Cluster Survey: Bright [C ii] 158 mu m Lines from a Multiply Imaged Sub-L* Galaxy at z=6.0719
  • 2021
  • Ingår i: Astrophysical Journal. - : American Astronomical Society. - 1538-4357 .- 0004-637X. ; 911:2
  • Forskningsöversikt (refereegranskat)abstract
    • We present bright [C ii] 158 mu m line detections from a strongly magnified and multiply imaged (mu similar to 20-160) sub-L* (MUV=-19.75-0.44+0.55) Lyman-break galaxy (LBG) at z = 6.0719 +/- 0.0004, drawn from the ALMA Lensing Cluster Survey (ALCS). Emission lines are identified at 268.7 GHz at >= 8 sigma exactly at the positions of two multiple images of the LBG, behind the massive galaxy cluster RXCJ0600-2007. Our lens models, updated with the latest spectroscopy from VLT/MUSE, indicate that a sub region of the LBG crosses the caustic, and is lensed into a long (similar to 6 '') arc with a local magnification of mu similar to 160, for which the [C ii] line is also significantly detected. The source plane reconstruction resolves the interstellar medium (ISM) structure, showing that the [C ii] line is co-spatial with the rest-frame UV continuum at a scale of similar to 300 pc. The [C ii] line properties suggest that the LBG is a rotation-dominated system, whose velocity gradient explains a slight difference in redshifts between the whole LBG and its sub-region. The star formation rate (SFR)-L-[CII] relations, for whole and sub-regions of the LBG, are consistent with those of local galaxies. We evaluate the lower limit of the faint-end of the [C ii] luminosity function at z = 6, finding it to be consistent with predictions from semi-analytical models and from the local SFR-L-[CII] relation with a SFR function at z = 6. These results imply that the local SFR-L-[CII] relation is universal for a wide range of scales, including the spatially resolved ISM, the whole region of the galaxy, and the cosmic scale, even in the epoch of reionization.
  •  
12.
  • Fujimoto, Seiji, et al. (författare)
  • JWST and ALMA Multiple-line Study in and around a Galaxy at z =8.496: Optical to Far-Infrared Line Ratios and the Onset of an Outflow Promoting Ionizing Photon Escape
  • 2024
  • Ingår i: Astrophysical Journal. - 1538-4357 .- 0004-637X. ; 964:2
  • Tidskriftsartikel (refereegranskat)abstract
    • We present Atacama Large Millimeter/submillimeter Array (ALMA) deep spectroscopy for a lensed galaxy at z(spec) = 8.496 with log(M-star/M-circle dot) similar to 7.8 whose optical nebular lines and stellar continuum are detected by JWST/NIRSpec and NIRCam Early Release Observations in the field of SMACS J0723.3-7327. Our ALMA spectrum shows [O III] 88 mu m and [C II] 158 mu m line detections at 4.0 sigma and 4.5 sigma, respectively. The redshift and position of the [O III] line coincide with those of the JWST source, while the [C II] line is blueshifted by 90 km s(-1) with a spatial offset of 0.'' 5 (approximate to 0.5 kpc in the source plane) from the centroid of the JWST source. The NIRCam F444W image, including [O III] lambda 5007 and H beta line emission, spatially extends beyond the stellar components by a factor of >8. This indicates that the z = 8.5 galaxy has already experienced strong outflows as traced by extended [O III] lambda 5007 and offset [C II] emission, which would promote ionizing photon escape and facilitate reionization. With careful slit-loss corrections and the removal of emission spatially outside the galaxy, we evaluate the [O III] 88 mu m/lambda 5007 line ratio, and derive the electron density n (e) by photoionization modeling to be 220(-130)(+230) cm(-3), which is comparable with those of z similar to 2-3 galaxies. We estimate an [O III] 88 mu m/[C II] 158 mu m line ratio in the galaxy of >4, as high as those of known z similar to 6-9 galaxies. This high [O III] 88 mu m/[C II] 158 mu m line ratio is generally explained by the high n(e) as well as the low metallicity (Z(gas)/Z(circle dot)=0.04(-0.02)(+0.02)), high ionization parameter (log U > -2.27), and low carbon-to-oxygen abundance ratio (log(C/O) = [-0.52: -0.24]) obtained from the JWST/NIRSpec data; further [C II] follow-up observations will constrain the covering fraction of photodissociation regions.
  •  
13.
  • Furtak, Lukas J., et al. (författare)
  • A variable active galactic nucleus at z = 2.06 triply-imaged by the galaxy cluster MACS J0035.4−2015
  • 2023
  • Ingår i: Monthly Notices of the Royal Astronomical Society. - 0035-8711 .- 1365-2966. ; 522:4, s. 5142-5151
  • Tidskriftsartikel (refereegranskat)abstract
    • We report the discovery of a triply imaged active galactic nucleus (AGN), lensed by the galaxy cluster MACS J0035.4−2015 (z d = 0.352). The object is detected in Hubble Space Telescope imaging taken for the RELICS program. It appears to have a quasi-stellar nucleus consistent with a point-source, with a de-magnified radius of re ≲ 100 pc. The object is spectroscopically confirmed to be an AGN at z spec = 2.063 ± 0.005 showing broad rest-frame UV emission lines, and detected in both X-ray observations with Chandra and in ALCS ALMA band 6 (1.2 mm) imaging. It has a relatively faint rest-frame UV luminosity for a quasar-like object, MUV, 1450 = −19.7 ± 0.2. The object adds to just a few quasars or other X-ray sources known to be multiply lensed by a galaxy cluster. Some diffuse emission from the host galaxy is faintly seen around the nucleus, and there is a faint object nearby sharing the same multiple-imaging symmetry and geometric redshift, possibly an interacting galaxy or a star-forming knot in the host. We present an accompanying lens model, calculate the magnifications and time delays, and infer the physical properties of the source. We find the rest-frame UV continuum and emission lines to be dominated by the AGN, and the optical emission to be dominated by the host galaxy of modest stellar mass M✶ ≃ 109.2 M⊙. We also observe some variation in the AGN emission with time, which may suggest that the AGN used to be more active. This object adds a low-redshift counterpart to several relatively faint AGN recently uncovered at high redshifts with HST and JWST.
  •  
14.
  • Giménez-Arteaga, C., et al. (författare)
  • Outshining in the spatially resolved analysis of a strongly lensed galaxy at z = 6.072 with JWST NIRCam
  • 2024
  • Ingår i: Astronomy and Astrophysics. - 0004-6361 .- 1432-0746. ; 686
  • Tidskriftsartikel (refereegranskat)abstract
    • We present JWST/NIRCam observations of a strongly lensed, sub-L∗, multiply imaged galaxy at z=6.072, with magnification factors μ³20 across the galaxy. The galaxy has rich HST, MUSE, and ALMA ancillary observations across a broad wavelength range. Aiming to quantify the reliability of stellar mass estimates of high redshift galaxies, we performed a spatially resolved analysis of the physical properties at scales of ~200 pc, inferred from spectral energy distribution (SED) modelling of five JWST/NIRCam imaging bands covering 0.16 μm < λrest < 0.63 μm on a pixel-by-pixel basis. We find young stars surrounded by extended older stellar populations. By comparing Hα+[Nâ¯II] and [Oâ¯III]+Hβ maps inferred from the image analysis with our additional NIRSpec integral field unit (IFU) data, we find that the spatial distribution and strength of the line maps are in agreement with the IFU measurements. We explore different parametric star formation history (SFH) forms with BAGPIPES on the spatially integrated photometry, finding that a double power-law (DPL) star formation history retrieves the closest value to the spatially resolved stellar mass estimate, and other SFH forms suffer from the dominant outshining emission from the youngest stars, thus underestimating the stellar mass - up to ~0.5 dex. On the other hand, the DPL cannot match the IFU-measured emission lines. Additionally, the ionising photon production efficiency may be overestimated in a spatially integrated approach by ~0.15 dex, when compared to a spatially resolved analysis. The agreement with the IFU measurements implies that our pixel-by-pixel results derived from the broadband images are robust, and that the mass discrepancies we find with spatially integrated estimates are not just an effect of SED-fitting degeneracies or the lack of NIRCam coverage. Additionally, this agreement points towards the pixel-by-pixel approach as a way to mitigate the general degeneracy between the flux excess from emission lines and underlying continuum, especially when lacking photometric medium-band coverage and/or IFU observations. This study stresses the importance of studying galaxies as the complex systems that they are, resolving their stellar populations when possible, or using more flexible SFH parameterisations. This can aid our understanding of the early stages of galaxy evolution by addressing the challenge of inferring robust stellar masses and ionising photon production efficiencies of high redshift galaxies.
  •  
15.
  • Ginolfi, M., et al. (författare)
  • Detection of companion galaxies around hot dust-obscured hyper-luminous galaxy W0410-0913
  • 2022
  • Ingår i: Nature Communications. - : Springer Science and Business Media LLC. - 2041-1723 .- 2041-1723. ; 13:1
  • Tidskriftsartikel (refereegranskat)abstract
    • The phase transition between galaxies and quasars is often identified with the rare population of hyper-luminous, hot dust-obscured galaxies. Galaxy formation models predict these systems to grow via mergers, that can deliver large amounts of gas toward their centers, induce intense bursts of star formation and feed their supermassive black holes. Here we report the detection of 24 galaxies emitting Lyman-α emission on projected physical scales of about 400 kpc around the hyper-luminous hot dust-obscured galaxy W0410-0913, at redshift z = 3.631, using Very Large Telescope observations. While this indicates that W0410-0913 evolves in a very dense environment, we do not find clear signs of mergers that could sustain its growth. Data suggest that if mergers occurred, as models expect, these would involve less massive satellites, with only a moderate impact on the internal interstellar medium of W0410-0913, which is sustained by a rotationally-supported fast-rotating molecular disk, as Atacama Large Millimeter Array observations suggest.
  •  
16.
  • Gkogkou, A., et al. (författare)
  • CONCERTO: Simulating the CO, [CII], and [CI] line emission of galaxies in a 117 deg2 field and the impact of field-to-field variance
  • 2023
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 670
  • Tidskriftsartikel (refereegranskat)abstract
    • In the submillimeter regime, spectral line scans and line intensity mapping (LIM) are new promising probes for the cold gas content and star formation rate of galaxies across cosmic time. However, both of these two measurements suffer from field-to-field variance. We study the effect of field-to-field variance on the predicted CO and [CII] power spectra from future LIM experiments such as CONCERTO, as well as on the line luminosity functions (LFs) and the cosmic molecular gas mass density that are currently derived from spectral line scans. We combined a 117 deg2 dark matter lightcone from the Uchuu cosmological simulation with the simulated infrared dusty extragalactic sky (SIDES) approach. The clustering of the dusty galaxies in the SIDES-Uchuu product is validated by reproducing the cosmic infrared background anisotropies measured by Herschel and Planck. We find that in order to constrain the CO LF with an uncertainty below 20%, we need survey sizes of at least 0.1 deg2. Furthermore, accounting for the field-to-field variance using only the Poisson variance can underestimate the total variance by up to 80%. The lower the luminosity is and the larger the survey size is, the higher the level of underestimate. At z < 3, the impact of field-to-field variance on the cosmic molecular gas density can be as high as 40% for the 4.6 arcmin2 field, but drops below 10% for areas larger than 0.2 deg2. However, at z > 3 the variance decreases more slowly with survey size and for example drops below 10% for 1 deg2 fields. Finally, we find that the CO and [CII] LIM power spectra can vary by up to 50% in 1 deg2 fields. This limits the accuracy of the constraints provided by the first 1 deg2 surveys. In addition the level of the shot noise power is always dominated by the sources that are just below the detection thresholds, which limits its potential for deriving number densities of faint [CII] emitters. We provide an analytical formula to estimate the field-to-field variance of current or future LIM experiments given their observed frequency and survey size. The underlying code to derive the field-to-field variance and the full SIDES-Uchuu products (catalogs, cubes, and maps) are publicly available.
  •  
17.
  • Guerrero, Andrea, et al. (författare)
  • ALMA Lensing Cluster Survey: Average dust, gas, and star-formation properties of cluster and field galaxies from stacking analysis
  • 2023
  • Ingår i: Monthly Notices of the Royal Astronomical Society. - 0035-8711 .- 1365-2966. ; 526:2, s. 2423-2439
  • Tidskriftsartikel (refereegranskat)abstract
    • We develop new tools for continuum and spectral stacking of Atacama Large Millimeter/submillimeter Array (ALMA) data, and apply these to the ALMA Lensing Cluster Survey. We derive average dust masses, gas masses, and star-formation rates (SFRs) from the stacked observed 260-GHz continuum of 3402 individually undetected star-forming galaxies, of which 1450 are cluster galaxies and 1952 field galaxies, over three redshift and stellar mass bins (over z = 0-1.6 and log-11.7), and derive the average molecular gas content by stacking the emission line spectra in a SFR-selected subsample. The average SFRs and specific SFRs of both cluster and field galaxies are lower than those expected for main-sequence (MS) star-forming galaxies, and only galaxies with stellar mass of log-10.6 show dust and gas fractions comparable with those in the MS. The ALMA-Traced average 'highly obscured' SFRs are typically lower than the SFRs observed from optical to near-infrared spectral analysis. Cluster and field galaxies show similar trends in their contents of dust and gas, even when field galaxies were brighter in the stacked maps. From spectral stacking we find a potential CO (J = 4 → 3) line emission (signal-To-noise ratio being ∼4) when stacking cluster and field galaxies with the highest SFRs.
  •  
18.
  • Hashimoto, Takuya, et al. (författare)
  • Big Three Dragons: Molecular Gas in a Bright Lyman-break Galaxy at z = 7.15
  • 2023
  • Ingår i: Astrophysical Journal. - 1538-4357 .- 0004-637X. ; 952:1
  • Tidskriftsartikel (refereegranskat)abstract
    • We report Atacama Large Millimeter/submillimeter Array Band 3 observations of CO(6−5), CO(7−6), and [C i](2−1) in B14-65666 (“Big Three Dragons”), one of the brightest Lyman-break galaxies at z > 7 in the rest-frame ultraviolet continuum, far-infrared continuum, and emission lines of [O iii] 88 μm and [C ii] 158 μm. CO(6−5), CO(7−6), and [C i](2−1), whose 3σ upper limits on the luminosities are approximately 40 times fainter than the [C ii] luminosity, are all not detected. The L [C II]/L CO(6-5) and L [C II]/L CO(7-6) ratios are higher than the typical ratios obtained in dusty star-forming galaxies or quasar host galaxies at similar redshifts, and they may suggest a lower gas density in the photodissociated region in B14-65666. By using the (1) [C ii] luminosity, (2) dust mass-to-gas mass ratio, and (3) a dynamical mass estimate, we find that the molecular gas mass (M mol) is (0.05-11) × 1010 M ⊙. This value is consistent with the upper limit inferred from the nondetection of mid-J CO and [C i](2−1). Despite the large uncertainty in M mol, we estimate a molecular gas-to-stellar mass ratio (μ gas) of 0.65-140 and a gas depletion time (τ dep) of 2.5-550 Myr; these values are broadly consistent with those of other high-redshift galaxies. B14-65666 could be an ancestor of a passive galaxy at z ≳ 4 if no gas is fueled from outside the galaxy.
  •  
19.
  • Heintz, K. E., et al. (författare)
  • The Gas and Stellar Content of a Metal-poor Galaxy at z = 8.496 as Revealed by JWST and ALMA
  • 2023
  • Ingår i: Astrophysical Journal Letters. - : American Astronomical Society. - 2041-8213 .- 2041-8205. ; 944:2
  • Tidskriftsartikel (refereegranskat)abstract
    • We present a joint analysis of the galaxy S04590 at z = 8.496 based on NIRSpec, NIRCam, and NIRISS observations obtained as part of the Early Release Observations program of the James Webb Space Telescope (JWST) and the far-infrared [C ii] 158 μm emission line detected by dedicated Atacama Large Millimeter/submillimeter Array (ALMA) observations. We determine the physical properties of S04590 from modeling of the spectral energy distribution (SED) and through the redshifted optical nebular emission lines detected with JWST/NIRSpec. The best-fit SED model reveals a low-mass (M ⋆ = 107.2-108 M ⊙) galaxy with a low oxygen abundance of 12 + log ( O / H ) = 7.16 − 0.12 + 0.10 derived from the strong nebular and auroral emission lines. Assuming that [C ii] effectively traces the interstellar medium, we estimate the total gas mass of the galaxy to be M gas = (8.0 ± 4.0) × 108 M ⊙ based on the luminosity and spatial extent of [C ii]. This yields an exceptionally high gas fraction, f gas = M gas/(M gas + M ⋆) ≳ 90%, though one still consistent with the range expected for low metallicity. We further derive the metal mass of the galaxy based on the gas mass and gas-phase metallicity, which we find to be consistent with the expected metal production from Type II supernovae. Finally, we make the first constraints on the dust-to-gas (DTG) and dust-to-metal (DTM) ratios of galaxies in the epoch of reionization at z ≳ 6, showing overall low mass ratios of logDTG < −3.8 and logDTM < −0.5, though they are consistent with established scaling relations and in particular with those of the local metal-poor galaxy I Zwicky 18. Our analysis highlights the synergy between ALMA and JWST in characterizing the gas, metal, and stellar content of the first generation of galaxies.
  •  
20.
  • Jolly, Jean Baptiste, 1990, et al. (författare)
  • ALMA Lensing Cluster Survey: A spectral stacking analysis of [C II] in lensed z similar to 6 galaxies
  • 2021
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 652
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. The properties of galaxies at redshift z>6 hold the key to our understanding of the early stages of galaxy evolution and can potentially identify the sources of the ultraviolet radiation that give rise to the epoch of reionisation. The far-infrared cooling line of [C II] at 158 mu m is known to be bright and correlate with the star formation rate (SFR) of low-redshift galaxies, and hence is also suggested to be an important tracer of star formation and interstellar medium properties for very high-redshift galaxies. Aims. With the aim to study the interstellar medium properties of gravitationally lensed galaxies at z>6, we search for [C II] and thermal dust emission in a sample of 52 > 6 galaxies observed by the ALMA Lensing Cluster Survey. Methods. We perform our analysis using LINESTACKER, stacking both [C II] and continuum emission. The target sample is selected from multiple catalogues, and the sample galaxies have spectroscopic redshift or low-uncertainty photometric redshifts (sigma(z)<0.02) in nine galaxy clusters. Source properties of the target galaxies are either extracted from the literature or computed using spectral energy distribution fitting. Both weighted-average and median stacking are used, on both the full sample and three sub-samples. Results. Our analyses find no detection of either [C II] or continuum. An upper limit on L-[CII] is derived, implying that [C II] remains marginally consistent for low-SFR z>6 galaxies but likely is under-luminous compared to the local L-[CII]-SFR relationship. We discuss potential biases and possible physical effects that may be the cause of the non-detection. Further, the upper limit on the dust continuum implies that less than half of the star formation is obscured.
  •  
21.
  • Jolly, Jean Baptiste, 1990, et al. (författare)
  • LINESTACKER: A spectral line stacking tool for interferometric data
  • 2020
  • Ingår i: Monthly Notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 499:3, s. 3992-4010
  • Tidskriftsartikel (refereegranskat)abstract
    • LINESTACKER is a new open access and open source tool for stacking of spectral lines in interferometric data. LINESTACKER is an ensemble of CASA tasks, and can stack both 3D cubes or already extracted spectra. The algorithm is tested on increasingly complex simulated data sets, mimicking Atacama Large Millimeter/submillimeter Array, and Karl G. Jansky Very Large Array observations of [C II] and CO(3-2) emission lines, from z ∼ 7 and z ∼ 4 galaxies, respectively. We find that the algorithm is very robust, successfully retrieving the input parameters of the stacked lines in all cases with an accuracy ≳90 per cent. However, we distinguish some specific situations showcasing the intrinsic limitations of the method. Mainly that high uncertainties on the redshifts (∆z > 0.01) can lead to poor signal-to-noise ratio improvement, due to lines being stacked on shifted central frequencies. Additionally, we give an extensive description of the embedded statistical tools included in LINESTACKER: mainly bootstrapping, rebinning, and subsampling. Velocity rebinning is applied on the data before stacking and proves necessary when studying line profiles, in order to avoid artificial spectral features in the stack. Subsampling is useful to sort the stacked sources, allowing to find a subsample maximizing the searched parameters, while bootstrapping allows to detect inhomogeneities in the stacked sample. LINESTACKER is a useful tool for extracting the most from spectral observations of various types.
  •  
22.
  • Kade, Kiana, 1998, et al. (författare)
  • Exploring the environment, magnetic fields, and feedback effects of massive high-redshift galaxies with [CII]
  • 2023
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 673
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. Massive galaxies are expected to grow through different transformative evolutionary phases. High-redshift starburst galaxies and quasars are thought to be such phases and thus provide insight into galaxy evolution. Several physical mechanisms are predicted to play an important role in driving these phases; for example, interaction with companion galaxies, active galactic nuclei feedback, and possibly magnetic fields. Aims. Our aim is to characterize the physical properties and the environment of the submillimeter galaxy AzTEC-3 at z=5.3 and the lensed quasar BRI 0952-0115 at z=4.4, and to set a limit on the polarization properties of the two sources. We intend to place these two sources in the broader context of galaxy evolution, specifically star formation and mass growth through cosmic time. Methods. We used full polarization, sub-arcsecond-resolution, ALMA band-7 observations of both BRI 0952-0115 and AzTEC-3. We detect [C II] (2P3/22P1/2) line emission towards both BRI 0952-0115 and AzTEC-3, along with companions in each field. We present an updated gravitational lensing model for BRI 0952-0115 for correction of gravitational magnification. Results. We present infrared luminosities, star-formation rates, and [C II] line to infrared luminosity ratios for each source. The [C II] emission line profile for both BRI 0952-0115 and AzTEC-3 exhibit a broad, complex morphology, indicating the possible presence of outflows. We present evidence of a -gas bridge-between AzTEC-3 and a companion source. Modified blackbody spectral energy distribution fitting is used to analyze the properties of [C II] detected companion sources in the field of both the submillimeter galaxy and the quasar. We investigated the possible role of the detected companions in outflow signatures. Using a simple dynamical mass estimate for the sources, we suggest that both systems are undergoing minor or major mergers. No polarization is detected for the [C II], placing an upper limit below that of theoretical predictions. Conclusions. Our results show that high-velocity wings are detected, indicating possible signs of massive outflows; however, the presence of companion galaxies can affect the final interpretation. Furthermore, the results provide additional evidence in support of the hypothesis that massive galaxies form in overdense regions, growing through minor or major mergers with companion sources. Finally, strong, ordered magnetic fields are unlikely to exist at the kiloparsec scale in the two studied sources.
  •  
23.
  • Kade, Kiana, 1998, et al. (författare)
  • Probing the interstellar medium of the quasar BRI 0952−0115 An analysis of [C ii], [C ii], CO, OH, and H 2 O
  • 2024
  • Ingår i: Astronomy and Astrophysics. - 0004-6361 .- 1432-0746. ; 684
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. The extent of the effect of active galactic nuclei (AGN) on their host galaxies at high-redshift is not apparent. The processes governing the co-eval evolution of the stellar mass and the mass of the central supermassive black hole, along with the effects of the supermassive black hole on the host galaxy, remain unclear. Studying this effect in the distant universe is a difficult process as the mechanisms of tracing AGN activity can often be inaccurately associated with intense star formation and vice versa. Aims. Our aim is to better understand the processes governing the interstellar medium (ISM) of the quasar BRI 0952−0952 at z = 4.432, specifically with regard to the individual heating processes at work and to place the quasar in an evolutionary context. Methods. We analyzed ALMA archival bands 3, 4, and 6 data and combined the results with high-resolution band-7 ALMA observations of the quasar. We detected [C i](2–1), [C ii](2P3/2−2P1/2), CO(5–4), CO(7–6), CO(12–11), OH 2Π1/2(3/2−1/2), and H2O(211−202), and we report a tentative detection of OH+. We updated the lensing model and we used the radiative transfer code MOLPOP-CEP to produce line emission models which we compared with our observations. Results. We used the [C i] line emission to estimate the total molecular gas mass in the quasar. We present results from the radiative transfer code MOLPOP-CEP constraining the properties of the CO emission and suggest different possible scenarios for heating mechanisms within the quasar. We extended our results from MOLPOP-CEP to the additional line species detected in the quasar to place stronger constraints on the ISM properties. Conclusions. Modeling from the CO SLED suggests that there are extreme heating mechanisms operating within the quasar in the form of star formation or AGN activity; however, with the current data, it remains unclear which of the two is the preferred mechanism as both models reasonably reproduce the observed CO line fluxes. The updated lensing model suggests a velocity gradient across the [C ii] line, suggestive of ongoing kinematical processes within the quasar. We find that the H2O emission in BRI 0952 is likely correlated with star-forming regions of the ISM. We used the molecular gas mass from [C i] to calculate a depletion time for the quasar. We conclude that BRI 0952−0952 is a quasar with a significant AGN contribution while also showing signs of extreme starburst activity, indicating that the quasar could be in a transitional phase between a starburst-dominated stage and an AGN-dominated stage.
  •  
24.
  • Killi, Meghana, et al. (författare)
  • A solar metallicity galaxy at z > 7? Possible detection of the [N II] 122 mu m and [O III] 52 mu m lines
  • 2023
  • Ingår i: Monthly Notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 521:2, s. 2526-2534
  • Tidskriftsartikel (refereegranskat)abstract
    • We present the first detection of the [NII] 122 mu m and [O III ] 52 mu m lines for a reionization-epoch galaxy. Based on these lines and previous [C II ] 158 mu m and [O III ] 88 mu m measurements, using two different radiati ve transfer models of the interstellar medium, we estimate an upper limit on electron density of < 500 cm(-3) and an approximate gas-phase metallicity of Z/Z(circle dot) similar to 1.1 +/- 0.2 for A1689-zD1, a gravitationally lensed dusty galaxy at z = 7.133. Other measurements or indicators of metallicity so far in galaxy interstellar media at z greater than or similar to 6 are typically an order of magnitude lower than this. The unusually high metallicity makes A1689-zD1 inconsistent with the fundamental metallicity relation, although there is likely significant dust obscuration of the stellar mass, which may partly resolve the inconsistency. Given a solar metallicity, the dust-to-metals ratio is a factor of several lower than expected, hinting that galaxies be yond z similar to 7 may hav e lower dust formation efficiency . Finally , the inferred nitrogen enrichment compared to oxygen, on which the metallicity measurement depends, indicates that star formation in the system is older than about 250 Myr, pushing the beginnings of this galaxy to z > 10.
  •  
25.
  • Kokorev, V., et al. (författare)
  • ALMA Lensing Cluster Survey: Hubble Space Telescope and Spitzer Photometry of 33 Lensed Fields Built with CHArGE
  • 2022
  • Ingår i: Astrophysical Journal, Supplement Series. - : American Astronomical Society. - 1538-4365 .- 0067-0049. ; 263:2
  • Tidskriftsartikel (refereegranskat)abstract
    • We present a set of multiwavelength mosaics and photometric catalogs in the Atacama Large Millimeter/ submillimeter Array (ALMA) lensing cluster survey fields. The catalogs were built by the reprocessing of archival data from the Complete Hubble Archive for Galaxy Evolution compilation, taken by the Hubble Space Telescope (HST) in the Reionization Lensing Cluster Survey, Cluster Lensing And Supernova survey with Hubble, and Hubble Frontier Fields. Additionally, we have reconstructed the Spitzer Infrared Array Camera 3.6 and 4.5 μm mosaics, by utilizing all the available archival IPAC Infrared Science Archive/Spitzer Heritage Archive exposures. To alleviate the effect of blending in such a crowded region, we have modeled the Spitzer photometry by convolving the HST detection image with the Spitzer point-spread function using the novel GOLFIR software. The final catalogs contain 218,000 sources, covering a combined area of 690 arcmin2, a factor of ∼2 improvement over the currently existing photometry. A large number of detected sources is a result of reprocessing of all available and sometimes deeper exposures, in conjunction with a combined optical–near-IR detection strategy. These data will serve as an important tool in aiding the search of the submillimeter galaxies in future ALMA surveys, as well as follow-ups of the HST dark and high-z sources with JWST. Coupled with the available HST photometry, the addition of the 3.6 and 4.5 μm bands will allow us to place a better constraint on the photometric redshifts and stellar masses of these objects, thus giving us an opportunity to identify high-redshift candidates for spectroscopic follow-ups and to answer the important questions regarding the Epoch of Reionization and formation of the first galaxies. The mosaics, photometric catalogs, and the best-fit physical properties are publicly available at https:// github.com/dawn-cph/alcs-clusters.
  •  
26.
  • Laporte, N., et al. (författare)
  • ALMA Lensing Cluster Survey: A strongly lensed multiply imaged dusty system at z ≥ 6
  • 2021
  • Ingår i: Monthly Notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 505:4, s. 4838-4846
  • Tidskriftsartikel (refereegranskat)abstract
    • We report the discovery of an intrinsically faint, quintuply-imaged, dusty galaxy MACS0600-z6 at a redshift z = 6.07 viewed through the cluster MACSJ0600.1–2008 (z = 0.46). A ≃ 4σ dust detection is seen at 1.2mm as part of the ALMA Lensing Cluster Survey (ALCS), an on-going ALMA Large programme, and the redshift is secured via [C II] 158 μm emission described in a companion paper. In addition, spectroscopic follow-up with GMOS/Gemini-North shows a break in the galaxy’s spectrum, consistent with the Lyman break at that redshift. We use a detailed mass model of the cluster and infer a magnification μ ≳ 30 for the most magnified image of this galaxy, which provides an unprecedented opportunity to probe the physical properties of a sub-luminous galaxy at the end of cosmic reionization. Based on the spectral energy distribution, we infer lensing-corrected stellar and dust masses of 2.9-2.3+115 × 109 and 4.8-3.4+45 × 106 M☉, respectively, a star formation rate of 9.7-6.6+220 M☉ yr−1, an intrinsic size of 0.54-0.14+026 kpc, and a luminosity-weighted age of 200 ± 100 Myr. Strikingly, the dust production rate in this relatively young galaxy appears to be larger than that observed for equivalent, lower redshift sources. We discuss if this implies that early supernovae are more efficient dust producers and the consequences for using dust mass as a probe of earlier star formation.
  •  
27.
  • Lin, Xiaojing, et al. (författare)
  • Metal-enriched Neutral Gas Reservoir around a Strongly Lensed Low-mass Galaxy at z = 4 Identified by JWST/NIRISS and VLT/MUSE
  • 2023
  • Ingår i: Astrophysical Journal Letters. - : American Astronomical Society. - 2041-8213 .- 2041-8205. ; 944:2
  • Tidskriftsartikel (refereegranskat)abstract
    • Direct observations of low-mass, low-metallicity galaxies at z ≳ 4 provide an indispensable opportunity for detailed inspection of the ionization radiation, gas flow, and metal enrichment in sources similar to those that reionized the universe. Combining the James Webb Space Telescope (JWST), Very Large Telescope/MUSE, and Atacama Large Millimeter/submillimeter Array, we present detailed observations of a strongly lensed, low-mass (≈107.6 M ⊙) galaxy at z = 3.98 (also see Vanzella et al.). We identify strong narrow nebular emission, including C iv λ λ1548, 1550, He ii λ1640, O iii] λ λ1661, 1666, [Ne iii] λ3868, [O ii] λ3727, and the Balmer series of hydrogen from this galaxy, indicating a metal-poor H ii region (≲0.12 Z ⊙) powered by massive stars. Further, we detect a metal-enriched damped Lyα system (DLA) associated with the galaxy with the H i column density of N H I ≈ 1021.8 cm−2. The metallicity of the associated DLA may reach the supersolar metallicity (≳Z ⊙). Moreover, thanks to JWST and gravitational lensing, we present the resolved UV slope (β) map at the spatial resolution of ≈100 pc at z = 4, with steep UV slopes reaching β ≈ −2.5 around three star-forming clumps. Combining with low-redshift analogs, our observations suggest that low-mass, low-metallicity galaxies, which dominate reionization, could be surrounded by a high covering fraction of the metal-enriched, neutral-gaseous clouds. This implies that the metal enrichment of low-mass galaxies is highly efficient, and further supports that in low-mass galaxies, only a small fraction of ionizing radiation can escape through the interstellar or circumgalactic channels with low-column-density neutral gas.
  •  
28.
  • Manning, Sinclaire M., et al. (författare)
  • Characterization of Two 2 mm detected Optically Obscured Dusty Star-forming Galaxies
  • 2022
  • Ingår i: Astrophysical Journal. - : American Astronomical Society. - 1538-4357 .- 0004-637X. ; 925:1
  • Tidskriftsartikel (refereegranskat)abstract
    • The 2 mm Mapping Obscuration to Reionization with ALMA (MORA) Survey was designed to detect high-redshift (z greater than or similar to 4), massive, dusty star-forming galaxies (DSFGs). Here we present two likely high-redshift sources, identified in the survey, whose physical characteristics are consistent with a class of optical/near-infrared (OIR)-invisible DSFGs found elsewhere in the literature. We first perform a rigorous analysis of all available photometric data to fit spectral energy distributions and estimate redshifts before deriving physical properties based on our findings. Our results suggest the two galaxies, called MORA-5 and MORA-9, represent two extremes of the "OIR-dark" class of DSFGs. MORA-5 (z(phot) = 4.3(-1.3)(+1.5)) is a significantly more active starburst with a star formation rate (SFR) of 830(-190)(+340) M-circle dot yr(-1) compared to MORA-9 (z(phot) = 4.3(-1.0)(+1.3)), whose SFR is a modest 200(-60)(+250) M-circle dot yr(-1). Based on the stellar masses (M-star approximate to 10(10-11) M-circle dot), space density (n similar to (5 +/- 2) x 10(-6) Mpc(-3), which incorporates two other spectroscopically confirmed OIR-dark DSFGs in the MORA sample at z = 4.6 and z = 5.9), and gas depletion timescales (<1 Gyr) of these sources, we find evidence supporting the theory that OIR-dark DSFGs are the progenitors of recently discovered 3 < z < 4 massive quiescent galaxies.
  •  
29.
  • Mendez-Hernandez, H., et al. (författare)
  • VALES VI: ISM enrichment in star-forming galaxies up to z similar to 0.2 using (CO)-C-12(1-0), (CO)-C-13(1-0), and (CO)-O-18(1-0) line luminosity ratios
  • 2020
  • Ingår i: Monthly Notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 497:3, s. 2771-2785
  • Tidskriftsartikel (refereegranskat)abstract
    • We present Atacama Large Millimeter/sub-millimeter Array (ALMA) observations towards 27 low-redshift (0.02< z< 0.2) starforming galaxies taken from the Valpara ' iso ALMA/APEX Line Emission Survey. We perform stacking analyses of the (CO)-C-12(1-0), (CO)-C-13(1-0), and (CO)-O-18(1-0) emission lines to explore the L' [(CO)-C-12(1-0)]/L' [(CO)-C-13(1-0)] [hereafter L' ((CO)-C-12)/L' ((CO)-C-13)] and L' [(CO)-C-13(1-0)]/L' [(CO)-O-18(1-0)] [hereafter L' ((CO)-C-13)/L' ((CO)-O-18)] line luminosity ratio dependence as a function of different global galaxy parameters related to the star formation activity. The sample has far-IR luminosities of 1010.1-11.9 L and stellar masses of 109.8-10.9M(circle dot) corresponding to typical star-forming and starburst galaxies at these redshifts. On average, we find an L' (12CO)/L' ((CO)-C-13) line luminosity ratio value of 16.1 +/- 2.5. Galaxies with pieces of evidence of possible merging activity tend to show higher L' ((CO)-C-12)/L' (13CO) ratios by a factor of 2, while variations of this order are also found in galaxy samples with higher star formation rates (SFRs) or star formation efficiencies (SFEs). We also find an average L' ((CO)-C-13)/L' ((CO)-O-18) line luminosity ratio of 2.5 +/- 0.6, which is in good agreement with those previously reported for starburst galaxies. We find that galaxy samples with high LIR, SFR, and SFE show low L' ((CO)-C-13)/L' ((CO)-O-18) line luminosity ratios with high L' ((CO)-C-12)/L' ((CO)-C-13) line luminosity ratios, suggesting that these trends are produced by selective enrichment of massive stars in young starbursts.
  •  
30.
  • Muxlow, T. W. B., et al. (författare)
  • The e-MERGE Survey (e-MERLIN Galaxy Evolution Survey): overview and survey description
  • 2020
  • Ingår i: Monthly Notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 495:1, s. 1188-1208
  • Tidskriftsartikel (refereegranskat)abstract
    • We present an overview and description of the e-MERGE Survey (e-MERLIN Galaxy Evolution Survey) Data Release 1 (DR1), a large program of high-resolution 1.5-GHz radio observations of the GOODS-N field comprising similar to 140 h of observations with enhanced-Multi-Element Remotely Linked Interferometer Network (e-MERLIN) and similar to 40 h with the Very Large Array (VLA). We combine the long baselines of e-MERLIN (providing high angular resolution) with the relatively closely packed antennas of the VLA (providing excellent surface brightness sensitivity) to produce a deep 1.5-GHz radio survey with the sensitivity (similar to 1.5 mu Jy beam(-1)), angular resolution (0.2-0.7 arcsec) and field-of-view (similar to 15x15 arcmin(2)) to detect and spatially resolve star-forming galaxies and active galactic nucleus (AGN) at z greater than or similar to 1. The goal of e-MERGE is to provide new constraints on the deep, sub-arcsecond radio sky which will be surveyed by SKA1-mid. In this initial publication, we discuss our data analysis techniques, including steps taken to model in-beam source variability over an similar to 20-yr baseline and the development of newpoint spread function/primary beam models to seamlessly merge e-MERLIN and VLA data in the uv plane. We present early science results, including measurements of the luminosities and/or linear sizes of similar to 500 galaxies selected at 1.5 GHz. In combination with deep Hubble Space Telescope observations, we measure a mean radio-to-optical size ratio of r(e-MERGE)/r(HST) similar to 1.02 +/- 0.03, suggesting that in most high-redshift galaxies, the similar to GHz continuum emission traces the stellar light seen in optical imaging. This is the first in a series of papers that will explore the similar to kpc-scale radio properties of star-forming galaxies and AGN in the GOODS-N field observed by e-MERGE DR1.
  •  
31.
  • Scholtz, Jan, 1992, et al. (författare)
  • The impact of ionized outflows from z - 2.5 quasars is not through instantaneous in situ quenching: The evidence from ALMA and VLT/SINFONI
  • 2021
  • Ingår i: Monthly Notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 505:4, s. 5469-5487
  • Tidskriftsartikel (refereegranskat)abstract
    • We present high-resolution (-2.4 kpc) ALMA band 7 observations (rest-frame λ - 250 μm) of three powerful z - 2.5 quasars (Lbol = 1047.3–1047.5 erg s−1). These targets have previously been reported as showing evidence for suppressed star formation based on cavities in the narrow H α emission at the location of outflows traced with [O III] emission. Here, we combine the ALMA observations with a re-analysis of the VLT/SINFONI data to map the rest-frame far-infrared emission, H α emission, and [O III] emission. In all targets, we observe high velocity [O III] gas (i.e. W80 - 1000–2000 km s−1) across the whole galaxy. We do not identify any H α emission that is free from contamination from AGN-related processes; however, based on SED analyses, we show that the ALMA data contain a significant dust-obscured star formation component in two out of the three systems. This dust emission is found to be extended over ≈1.5–5.5 kpc in the nuclear regions, overlaps with the previously reported H α cavities and is co-spatial with the peak in surface brightness of the [O III] outflows. In summary, within the resolution and sensitivity limits of the data, we do not see any evidence for a instantaneous shut down of in situ star formation caused directly by the outflows. However, similar to the conclusions of previous studies and based on our measured star formation rates, we do not rule out that the global host galaxy star formation could be suppressed on longer time-scales by the cumulative effect of quasar episodes during the growth of these massive black holes.
  •  
32.
  • Stanley, Flora, 1990, et al. (författare)
  • Detection of H 2 O and OH + in z > 3 hot dust-obscured galaxies
  • 2021
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 646
  • Tidskriftsartikel (refereegranskat)abstract
    • Aims. In this paper we present the detection of H2O and OH+ emission in z > 3 hot dust-obscured galaxies (Hot DOGs). Methods. Using ALMA Band-6 observations of two Hot DOGs, we detected H2O(202-111) in W0149+2350, and H2O(312-303) and the multiplet OH+(11-01) in W0410-0913. These detections were serendipitous, falling within the side-bands of Band-6 observations aimed to study CO(9-8) in these Hot DOGs. Results. We find that both sources have luminous H2O emission with line luminosities of LH2O(202-111) > 2.2 × 108Lpdbl and LH2O(312-303) = 8.7 × 108Lpdbl for W0149+2350 and W0410-0913, respectively. The H2O line profiles are similar to those seen for the neighbouring CO(9-8) line, with line widths of full width at half maximum (FWHM) ∼800-1000 km s-1. However, the H2O emission seems to be more compact than the CO(9-8). OH+(11-01) is detected in emission for W0410-0913, with a FWHM = 1000 km s-1 and a line luminosity of LOH+(11-01) = 6.92 × 108Lpdbl. The ratio of the observed H2O line luminosity over the IR luminosity, for both Hot DOGs, is consistent with previously observed star-forming galaxies and active galactic nuclei (AGN). The H2O/CO line ratio of both Hot DOGs and the OH+/H2O line ratio of W0410-0913 are comparable to those of luminous AGN found in the literature. Conclusions. The bright H2O(202-111), and H2O(312-303) emission lines are likely due to the combined high star formation levels and luminous AGN in these sources. The presence of OH+ in emission, and the agreement of the observed line ratios of the Hot DOGs with luminous AGN in the literature, would suggest that the AGN emission is dominating the radiative output of these galaxies. However, follow-up multi-transition observations are needed to better constrain the properties of these systems.
  •  
33.
  • Zavala, J. A., et al. (författare)
  • The Evolution of the IR Luminosity Function and Dust-obscured Star Formation over the Past 13 Billion Years
  • 2021
  • Ingår i: Astrophysical Journal. - : American Astronomical Society. - 1538-4357 .- 0004-637X. ; 909:2
  • Tidskriftsartikel (refereegranskat)abstract
    • We present the first results from the Mapping Obscuration to Reionization with ALMA (MORA) survey, the largest Atacama Large Millimeter/submillimeter Array (ALMA) blank-field contiguous survey to date (184 arcmin(2)) and the only at 2 mm to search for dusty star-forming galaxies (DSFGs). We use the 13 sources detected above 5 sigma to estimate the first ALMA galaxy number counts at this wavelength. These number counts are then combined with the state-of-the-art galaxy number counts at 1.2 and 3 mm and with a backward evolution model to place constraints on the evolution of the IR luminosity function and dust-obscured star formation in the past 13 billion years. Our results suggest a steep redshift evolution on the space density of DSFGs and confirm the flattening of the IR luminosity function at faint luminosities, with a slope of alpha(LF) = -0.42(-0.04)(+0.02). We conclude that the dust-obscured component, which peaks at z approximate to 2-2.5, has dominated the cosmic history of star formation for the past similar to 12 billion years, back to z similar to 4. At z = 5, the dust-obscured star formation is estimated to be similar to 35% of the total star formation rate density and decreases to 25%-20% at z = 6-7, implying a minor contribution of dusten-shrouded star formation in the first billion years of the universe. With the dust-obscured star formation history constrained up to the end of the epoch of reionization, our results provide a benchmark to test galaxy formation models, to study the galaxy mass assembly history, and to understand the dust and metal enrichment of the universe at early times.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-33 av 33

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy