SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Kosowsky Arthur) srt2:(2020)"

Sökning: WFRF:(Kosowsky Arthur) > (2020)

  • Resultat 1-2 av 2
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Pol, Alberto Roper, et al. (författare)
  • Numerical simulations of gravitational waves from early-universe turbulence
  • 2020
  • Ingår i: Physical Review D. - : American Physical Society. - 1550-7998 .- 1550-2368. ; 102:8
  • Tidskriftsartikel (refereegranskat)abstract
    • We perform direct numerical simulations of magnetohydrodynamic turbulence in the early universe and numerically compute the resulting stochastic background of gravitational waves and relic magnetic fields. These simulations do not make the simplifying assumptions of earlier analytic work. If the turbulence is assumed to have an energy-carrying scale that is about a hundredth of the Hubble radius at the time of generation, as expected in a first-order phase transition, the peak of gravitational wave power will be in the mHz frequency range for a signal produced at the electroweak scale. The efficiency of gravitational wave (GW) production varies significantly with how the turbulence is driven. Detectability of turbulence at the electroweak scale by the planned Laser Interferometer Space Antenna (LISA) requires anywhere from 0.1% to 10% of the thermal plasma energy density to be in plasma motions or magnetic fields, depending on the model of the driving process. Our results predict a new universal form below the spectral peak frequency that is shallower than previously thought. This implies larger values of the GWenergy spectra in the low-frequency range. This extends the range where turbulence is detectable with LISA to lower frequencies, corresponding to higher energy scales than the assumed energy-carrying scale.
  •  
2.
  • Roper Pol, Alberto, et al. (författare)
  • The timestep constraint in solving the gravitational wave equations sourced by hydromagnetic turbulence
  • 2020
  • Ingår i: Geophysical and Astrophysical Fluid Dynamics. - : Informa UK Limited. - 0309-1929 .- 1029-0419. ; 114:1-2, s. 130-161
  • Tidskriftsartikel (refereegranskat)abstract
    • Hydromagnetic turbulence produced during phase transitions in the early universe can be a powerful source of stochastic gravitational waves (GWs). GWs can be modelled by the linearised spatial part of the Einstein equations sourced by the Reynolds and Maxwell stresses. We have implemented two different GW solvers into the Pencil Code - a code which uses a third order timestep and sixth order finite differences. Using direct numerical integration of the GW equations, we study the appearance of a numerical degradation of the GW amplitude at the highest wavenumbers, which depends on the length of the timestep - even when the Courant-Friedrichs-Lewy condition is ten times below the stability limit. This degradation leads to a numerical error, which is found to scale with the third power of the timestep. A similar degradation is not seen in the magnetic and velocity fields. To mitigate numerical degradation effects, we alternatively use the exact solution of the GW equations under the assumption that the source is constant between subsequent timesteps. This allows us to use a much longer timestep, which cuts the computational cost by a factor of about ten.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-2 av 2
Typ av publikation
tidskriftsartikel (2)
Typ av innehåll
refereegranskat (2)
Författare/redaktör
Kosowsky, Arthur (2)
Brandenburg, Axel (2)
Kahniashvili, Tina (2)
Mandal, Sayan (2)
Pol, Alberto Roper (1)
Roper Pol, Alberto (1)
Lärosäte
Kungliga Tekniska Högskolan (2)
Stockholms universitet (2)
Språk
Engelska (2)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (2)
År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy