SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Krjutškov K.) srt2:(2020-2024)"

Sökning: WFRF:(Krjutškov K.) > (2020-2024)

  • Resultat 1-15 av 15
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Khatun, M, et al. (författare)
  • Decidualized endometrial stromal cells present with altered androgen response in PCOS
  • 2021
  • Ingår i: Scientific reports. - : Springer Science and Business Media LLC. - 2045-2322. ; 11:1, s. 16287-
  • Tidskriftsartikel (refereegranskat)abstract
    • Hyperandrogenic women with PCOS show disrupted decidualization (DE) and placentation. Dihydrotestosterone (DHT) is reported to enhance DE in non-PCOS endometrial stromal cells (eSCCtrl); however, this has not been assessed in PCOS cells (eSCPCOS). Therefore, we studied the transcriptome profile of non-decidualized (non-DE) and DE eSCs from women with PCOS and Ctrl in response to short-term estradiol (E2) and/or progesterone (P4) exposure with/without (±) DHT. The non-DE eSCs were subjected to E2 ± DHT treatment, whereas the DE (0.5 mM 8-Br-cAMP, 96 h) eSCs were post-treated with E2 and P4 ± DHT, and RNA-sequenced. Validation was performed by immunofluorescence and immunohistochemistry. The results showed that, regardless of treatment, the PCOS and Ctrl samples clustered separately. The comparison of DE vs. non-DE eSCPCOS without DHT revealed PCOS-specific differentially expressed genes (DEGs) involved in mitochondrial function and progesterone signaling. When further adding DHT, we detected altered responses for lysophosphatidic acid (LPA), inflammation, and androgen signaling. Overall, the results highlight an underlying defect in decidualized eSCPCOS, present with or without DHT exposure, and possibly linked to the altered pregnancy outcomes. We also report novel factors which elucidate the mechanisms of endometrial dysfunction in PCOS.
  •  
2.
  •  
3.
  •  
4.
  • Katayama, S., et al. (författare)
  • Acute wheeze-specific gene module shows correlation with vitamin D and asthma medication
  • 2020
  • Ingår i: European Respiratory Journal. - : NLM (Medline). - 0903-1936 .- 1399-3003. ; 55:1
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND: Airway obstruction and wheezing in preschool children with recurrent viral infections are a major clinical problem, and are recognised as a risk factor for the development of chronic asthma. We aimed to analyse whether gene expression profiling provides evidence for pathways that delineate distinct groups of children with wheeze, and in combination with clinical information could contribute to diagnosis and prognosis of disease development. METHODS: We analysed leukocyte transcriptomes from preschool children (6 months-3 years) at acute wheeze (n=107), and at a revisit 2-3 months later, comparing them to age-matched healthy controls (n=66). RNA-sequencing applying GlobinLock was used. The cases were followed clinically until age 7 years. Differential expression tests, weighted correlation network analysis and logistic regression were applied and correlations to 76 clinical traits evaluated. FINDINGS: Significant enrichment of genes involved in the innate immune responses was observed in children with wheeze. We identified a unique acute wheeze-specific gene-module, which was associated with vitamin D levels (p<0.005) in infancy, and asthma medication and FEV1%/FVC (forced expiratory volume in 1 s/forced vital capacity) ratio several years later, at age 7 years (p<0.005). A model that predicts leukotriene receptor antagonist medication at 7 years of age with high accuracy was developed (area under the curve 0.815, 95% CI 0.668-0.962). INTERPRETATION: Gene expression profiles in blood from preschool wheezers predict asthma symptoms at school age, and therefore serve as biomarkers. The acute wheeze-specific gene module suggests that molecular phenotyping in combination with clinical information already at an early episode of wheeze may help to distinguish children who will outgrow their wheeze from those who will develop chronic asthma.
  •  
5.
  •  
6.
  •  
7.
  • Bieder, A, et al. (författare)
  • Dyslexia Candidate Gene and Ciliary Gene Expression Dynamics During Human Neuronal Differentiation
  • 2020
  • Ingår i: Molecular neurobiology. - : Springer Science and Business Media LLC. - 1559-1182 .- 0893-7648. ; 57:7, s. 2944-2958
  • Tidskriftsartikel (refereegranskat)abstract
    • Developmental dyslexia (DD) is a neurodevelopmental condition with complex genetic mechanisms. A number of candidate genes have been identified, some of which are linked to neuronal development and migration and to ciliary functions. However, expression and regulation of these genes in human brain development and neuronal differentiation remain uncharted. Here, we used human long-term self-renewing neuroepithelial stem (lt-NES, here termed NES) cells derived from human induced pluripotent stem cells to study neuronal differentiation in vitro. We characterized gene expression changes during differentiation by using RNA sequencing and validated dynamics for selected genes by qRT-PCR. Interestingly, we found that genes related to cilia were significantly enriched among upregulated genes during differentiation, including genes linked to ciliopathies with neurodevelopmental phenotypes. We confirmed the presence of primary cilia throughout neuronal differentiation. Focusing on dyslexia candidate genes, 33 out of 50 DD candidate genes were detected in NES cells by RNA sequencing, and seven candidate genes were upregulated during differentiation to neurons, including DYX1C1 (DNAAF4), a highly replicated DD candidate gene. Our results suggest a role of ciliary genes in differentiating neuronal cells and show that NES cells provide a relevant human neuronal model to study ciliary and DD candidate genes.
  •  
8.
  •  
9.
  •  
10.
  •  
11.
  • Paloviita, P, et al. (författare)
  • Small RNA expression and miRNA modification dynamics in human oocytes and early embryos
  • 2021
  • Ingår i: Genome research. - : Cold Spring Harbor Laboratory. - 1549-5469 .- 1088-9051. ; 31:8, s. 1474-
  • Tidskriftsartikel (refereegranskat)abstract
    • Small noncoding RNAs (sRNAs) play important roles during the oocyte-to-embryo transition (OET), when the maternal phenotype is reprogrammed and the embryo genome is gradually activated. The transcriptional program driving early human development has been studied with the focus mainly on protein-coding RNAs, and expression dynamics of sRNAs remain largely unexplored. We profiled sRNAs in human oocytes and early embryos using an RNA-sequencing (RNA-seq) method suitable for low inputs of material. We show that OET in humans is temporally coupled with the transition from predominant expression of oocyte short piRNAs (os-piRNAs) in oocytes, to activation of microRNA (miRNA) expression in cleavage stage embryos. Additionally, 3′ mono- and oligoadenylation of miRNAs is markedly increased in zygotes. We hypothesize that this may modulate the function or stability of maternal miRNAs, some of which are retained throughout the first cell divisions in embryos. This study is the first of its kind elucidating the dynamics of sRNA expression and miRNA modification along a continuous trajectory of early human development and provides a valuable data set for in-depth interpretative analyses.
  •  
12.
  •  
13.
  • Paluoja, P, et al. (författare)
  • Systematic evaluation of NIPT aneuploidy detection software tools with clinically validated NIPT samples
  • 2021
  • Ingår i: PLoS computational biology. - : Public Library of Science (PLoS). - 1553-7358. ; 17:12, s. e1009684-
  • Tidskriftsartikel (refereegranskat)abstract
    • Non-invasive prenatal testing (NIPT) is a powerful screening method for fetal aneuploidy detection, relying on laboratory and computational analysis of cell-free DNA. Although several published computational NIPT analysis tools are available, no prior comprehensive, head-to-head accuracy comparison of the various tools has been published. Here, we compared the outcome accuracies obtained for clinically validated samples with five commonly used computational NIPT aneuploidy analysis tools (WisecondorX, NIPTeR, NIPTmer, RAPIDR, and GIPseq) across various sequencing depths (coverage) and fetal DNA fractions. The sample set included cases of fetal trisomy 21 (Down syndrome), trisomy 18 (Edwards syndrome), and trisomy 13 (Patau syndrome). We determined that all of the compared tools were considerably affected by lower sequencing depths, such that increasing proportions of undetected trisomy cases (false negatives) were observed as the sequencing depth decreased. We summarised our benchmarking results and highlighted the advantages and disadvantages of each computational NIPT software. To conclude, trisomy detection for lower coverage NIPT samples (e.g. 2.5M reads per sample) is technically possible but can, with some NIPT tools, produce troubling rates of inaccurate trisomy detection, especially in low-FF samples.
  •  
14.
  • Plaza-Florido, A., et al. (författare)
  • Distinct whole-blood transcriptome profile of children with metabolic healthy overweight/obesity compared to metabolic unhealthy overweight/obesity
  • 2020
  • Ingår i: Pediatric Research. - : Springer Nature. - 0031-3998 .- 1530-0447.
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Youth populations with overweight/obesity (OW/OB) exhibit heterogeneity in cardiometabolic health phenotypes. The underlying mechanisms for those differences are still unclear. This study aimed to analyze the whole-blood transcriptome profile (RNA-seq) of children with metabolic healthy overweight/obesity (MHO) and metabolic unhealthy overweight/obesity (MUO) phenotypes. Methods: Twenty-seven children with OW/OB (10.1 ± 1.3 years, 59% boys) from the ActiveBrains project were included. MHO was defined as having none of the following criteria for metabolic syndrome: elevated fasting glucose, high serum triglycerides, low high-density lipoprotein-cholesterol, and high systolic or diastolic blood pressure, while MUO was defined as presenting one or more of these criteria. Inflammatory markers were additionally determined. Total blood RNA was analyzed by 5’-end RNA-sequencing. Results: Whole-blood transcriptome analysis revealed a distinct pattern of gene expression in children with MHO compared to MUO children. Thirty-two genes differentially expressed were linked to metabolism, mitochondrial, and immune functions. Conclusions: The identified gene expression patterns related to metabolism, mitochondrial, and immune functions contribute to a better understanding of why a subset of the population remains metabolically healthy despite having overweight/obesity. Impact: A distinct pattern of whole-blood transcriptome profile (RNA-seq) was identified in children with metabolic healthy overweight/obesity (MHO) compared to metabolic unhealthy overweight/obesity (MUO) phenotype.The most relevant genes in understanding the molecular basis underlying the MHO/MUO phenotypes in children could be: RREB1, FAM83E, SLC44A1, NRG1, TMC5, CYP3A5, TRIM11, and ADAMTSL2.The identified whole-blood transcriptome profile related to metabolism, mitochondrial, and immune functions contribute to a better understanding of why a subset of the population remains metabolically healthy despite having overweight/obesity.
  •  
15.
  • Varshney, MK, et al. (författare)
  • Motor Function Deficits in the Estrogen Receptor Beta Knockout Mouse: Role on Excitatory Neurotransmission and Myelination in the Motor Cortex
  • 2020
  • Ingår i: Neuroendocrinology. - : S. Karger AG. - 1423-0194 .- 0028-3835. ; 111:1-2, s. 27-44
  • Tidskriftsartikel (refereegranskat)abstract
    • <b><i>Background:</i></b> Male estrogen receptor beta (ERβ) knockout (BERKO) mice display anxiety and aggression linked to, among others, altered serotonergic signaling in the basolateral amygdala and dorsal raphe, impaired cortical radial glia migration, and reduced GABAergic signaling. The effects on primary motor cortex (M1 cortex) and locomotor activity as a consequence of ERβ loss have not been investigated. <b><i>Objective:</i></b> The aim of this study was to determine whether locomotor activity is altered as a consequence of the changes in the M1 cortex. <b><i>Methods:</i></b> The locomotor activity of male wild-type (WT) and BERKO mice was evaluated using the open-field and rotarod tests. Molecular changes in the M1 cortex were analyzed by RNA sequencing, electron microscopy, electrophysiology, and immunohistological techniques. In addition, we established oligodendrocyte (OL) cultures from WT and BERKO mouse embryonic stem cells to evaluate OL function. <b><i>Results:</i></b> Locomotor profiling revealed that BERKO mice were more active than WT mice but had impaired motor coordination. Analysis of the M1 cortex pointed out differences in synapse function and myelination. There was a reduction in GABAergic signaling resulting in imbalanced excitatory and inhibitory neurotransmission as well as a defective OL differentiation accompanied by myelin defects. The effects of ERβ loss on OL differentiation were confirmed in vitro. <b><i>Conclusion:</i></b> ERβ is an important regulator of GABAergic interneurons and OL differentiation, which impacts on adult M1 cortex function and may be linked to increased locomotor activity and decreased motor coordination in BERKO mice.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-15 av 15

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy