SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Kuisma Mikael Juhani 1984) srt2:(2022)"

Sökning: WFRF:(Kuisma Mikael Juhani 1984) > (2022)

  • Resultat 1-2 av 2
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Fojt, Jakub, 1996, et al. (författare)
  • Hot-Carrier Transfer across a Nanoparticle-Molecule Junction: The Importance of Orbital Hybridization and Level Alignment
  • 2022
  • Ingår i: Nano Letters. - : American Chemical Society (ACS). - 1530-6992 .- 1530-6984. ; 22:21, s. 8786-8792
  • Tidskriftsartikel (refereegranskat)abstract
    • While direct hot-carrier transfer can increase photocatalytic activity, it is difficult to discern experimentally and competes with several other mechanisms. To shed light on these aspects, here, we model from first-principles hot-carrier generation across the interface between plasmonic nanoparticles and a CO molecule. The hot-electron transfer probability depends nonmonotonically on the nanoparticle-molecule distance and can be effective at long distances, even before a strong chemical bond can form; hot-hole transfer on the other hand is limited to shorter distances. These observations can be explained by the energetic alignment between molecular and nanoparticle states as well as the excitation frequency. The hybridization of the molecular orbitals is the key predictor for hot-carrier transfer in these systems, emphasizing the necessity of ground state hybridization for accurate predictions. Finally, we show a nontrivial dependence of the hot-carrier distribution on the excitation energy, which could be exploited when optimizing photocatalytic systems.
  •  
2.
  • Kuisma, Mikael Juhani, 1984, et al. (författare)
  • Ultrastrong Coupling of a Single Molecule to a Plasmonic Nanocavity: A First-Principles Study
  • 2022
  • Ingår i: ACS Photonics. - : American Chemical Society (ACS). - 2330-4022. ; 9, s. 1065-1077
  • Tidskriftsartikel (refereegranskat)abstract
    • Ultrastrong coupling (USC) is a distinct regime of light-matter interaction in which the coupling strength is comparable to the resonance energy of the cavity or emitter. In the USC regime, common approximations to quantum optical Hamiltonians, such as the rotating wave approximation, break down as the ground state of the coupled system gains photonic character due to admixing of vacuum states with higher excited states, leading to ground-state energy changes. USC is usually achieved by collective coherent coupling of many quantum emitters to a single mode cavity, whereas USC with a single molecule remains challenging. Here, we show by time-dependent density functional theory (TDDFT) calculations that a single organic molecule can reach USC with a plasmonic dimer, consisting of a few hundred atoms. In this context, we discuss the capacity of TDDFT to represent strong coupling and its connection to the quantum optical Hamiltonian. We find that USC leads to appreciable ground-state energy modifications accounting for a non-negligible part of the total interaction energy, comparable to kBT at room temperature.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-2 av 2

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy