SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Kukk E) srt2:(2020-2023)"

Sökning: WFRF:(Kukk E) > (2020-2023)

  • Resultat 1-9 av 9
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Kukk, E., et al. (författare)
  • Formative period in the x-ray-induced photodissociation of organic molecules
  • 2021
  • Ingår i: Physical Review Research. - 2643-1564. ; 3:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Absorption of x-ray photons by atomic inner shells of light-element organics and biomolecules often leads to formation of dicationic electronic states and to molecular fragmentation. We investigated the x-ray-induced dissociation landscape of a representative medium-sized organic molecule, thiophene, by femtosecond x-ray pulses from the Super Photon Ring-8 GeV (SPring-8) Angstrom Compact Free-Electron Laser (SACLA). Holes, created in the sulfur 2p orbital by photoemission, were filled by the Auger process that created dicationic molecular states within a broad range of internal energies—a starting point particular to x-ray-induced dynamics. The evolution of the ionized molecules was monitored by a pump-probe experiment using a near-infrared (800 nm) laser pulse. Ion-ion coincidence and ion momentum analysis reveals enhanced yields of ionic fragments from multibody breakup of the ring, attributed to additional ionization of the highly excited fraction of the dicationic parent molecular states. The transient nature of the enhancement and its decay with about a 160-fs time constant indicate formation of an open-ring parent geometry and the statistical survival time of the parent species before the dissociation events. By probing specific Auger final states of transient, highly excited nature by near-infrared light, we demonstrate how pump-probe signatures can be related to the key features in dynamics during the early period of the x-ray-induced damage of organic molecules and biomolecules.
  •  
2.
  •  
3.
  • Jahnke, T., et al. (författare)
  • Inner-Shell-Ionization-Induced Femtosecond Structural Dynamics of Water Molecules Imaged at an X-Ray Free-Electron Laser
  • 2021
  • Ingår i: Physical Review X. - : American Physical Society. - 2160-3308. ; 11:4
  • Tidskriftsartikel (refereegranskat)abstract
    • The ultrafast structural dynamics of water following inner-shell ionization is a crucial issue in high-energy radiation chemistry. We have exposed isolated water molecules to a short x-ray pulse from a free-electron laser and detected momenta of all produced ions in coincidence. By combining experimental results and theoretical modeling, we can image dissociation dynamics of individual molecules in unprecedented detail. We reveal significant molecular structural dynamics in H2O2+, such as asymmetric deformation and bond-angle opening, leading to two-body or three-body fragmentation on a timescale of a few femtoseconds. We thus reconstruct several snapshots of structural dynamics at different time intervals, which highlight dynamical patterns that are relevant as initiating steps of subsequent radiation-damage processes.
  •  
4.
  • Travnikova, O., et al. (författare)
  • Ultrafast dissociation of ammonia : Auger Doppler effect and redistribution of the internal energy
  • 2022
  • Ingår i: Physical Chemistry, Chemical Physics - PCCP. - : Royal Society of Chemistry (RSC). - 1463-9076 .- 1463-9084. ; 24:10, s. 5842-5854
  • Tidskriftsartikel (refereegranskat)abstract
    • We study vibrationally-resolved resonant Auger (RAS) spectra of ammonia recorded in coincidence with the NH2+ fragment, which is produced in the course of dissociation either in the core-excited 1s−14a11 intermediate state or the first spectator 3a−24a11 final state. Correlation of the NH2+ ion flight times with electron kinetic energies allows directly observing the Auger-Doppler dispersion for each vibrational state of the fragment. The median distribution of the kinetic energy release EKER, derived from the coincidence data, shows three distinct branches as a function of Auger electron kinetic energy Ee: Ee + 1.75EKER = const for the molecular band; EKER = const for the fragment band; and Ee + EKER = const for the region preceding the fragment band. The deviation of the molecular band dispersion from Ee + EKER = const is attributed to the redistribution of the available energy to the dissociation energy and excitation of the internal degrees of freedom in the molecular fragment. We found that for each vibrational line the dispersive behavior of EKERvs. Ee is very sensitive to the instrumental uncertainty in the determination of EKER causing the competition between the Raman (EKER + Ee = const) and Auger (Ee = const) dispersions: increase in the broadening of the finite kinetic energy release resolution leads to a change of the dispersion from the Raman to the Auger one. 
  •  
5.
  • Guillemin, R., et al. (författare)
  • Isotope effects in dynamics of water isotopologues induced by core ionization at an x-ray free-electron laser
  • 2023
  • Ingår i: STRUCTURAL DYNAMICS-US. - 2329-7778. ; 10:5
  • Tidskriftsartikel (refereegranskat)abstract
    • Dynamical response of water exposed to x-rays is of utmost importance in a wealth of science areas. We exposed isolated water isotopologues to short x-ray pulses from a free-electron laser and detected momenta of all produced ions in coincidence. By combining experimental results and theoretical modeling, we identify significant structural dynamics with characteristic isotope effects in H2O2+, D2O2+, and HDO2+, such as asymmetric bond elongation and bond-angle opening, leading to two-body or three-body fragmentation on a timescale of a few femtoseconds. A method to disentangle the sequences of events taking place upon the consecutive absorption of two x-ray photons is described. The obtained deep look into structural properties and dynamics of dissociating water isotopologues provides essential insights into the underlying mechanisms.
  •  
6.
  • Kukk, E., et al. (författare)
  • Energy-dependent timescales in the dissociation of diiodothiophene dication
  • 2023
  • Ingår i: Physical Chemistry Chemical Physics. - : Royal Society of Chemistry (RSC). - 1463-9076 .- 1463-9084. ; 25:7, s. 5795-5807
  • Tidskriftsartikel (refereegranskat)abstract
    • Photodissociation molecular dynamics of gas-phase 2,5-diiodothiophene molecules was studied in an electron-energy-resolved electron-multi-ion coincidence experiment performed at the FinEstBeAMS beamline of MAX IV synchrotron. Following the photoionization of the iodine 4d subshell and the Auger decay, the dissociation landscape of the molecular dication was investigated as a function of the Auger electron energy. Concentrating on an major dissociation pathway, C4H2I2S2+ -> C4H2S+ + I+ + I, and accessing the timescales of the process via ion momentum correlation analysis, it was revealed how this three-body process changes depending on the available internal energy. Using a generalized secondary dissociation model, the process was shown to evolve from secondary dissociation regime towards concerted dissociation as the available energy increased, with the secondary dissociation time constant changing from 1.5 ps to 129 fs. The experimental results were compared with simulations using a stochastic charge-hopping molecular mechanics model. It represented the observed trend and also gave a fair quantitative agreement with the experiment.
  •  
7.
  • Kukk, E., et al. (författare)
  • Unified treatment of recoil and Doppler broadening in molecular high-energy photoemission
  • 2021
  • Ingår i: New Journal of Physics. - : Institute of Physics Publishing (IOPP). - 1367-2630. ; 23:6
  • Tidskriftsartikel (refereegranskat)abstract
    • Doppler and recoil effects are an integral part of the photoemission process at the high kinetic energies reached in hard x-ray photo-electron spectroscopy (HAXPES) and have a major effect on the observed lineshape, resulting in broadening, energy losses and discrete excitations. These effects can be modeled with a high degree of detail for small systems like diatomic molecules, for larger systems such treatment is often superfluous as the fine spectral features are not observable. We present a united description of the Doppler and recoil effects for arbitrary polyatomic systems and offer an approximate description of the recoil- and Doppler-modified photoemission spectral lineshape as a practical tool in the analysis of HAXPES spectra of core-level photoemission. The approach is tested on the examples of carbon dioxide and pentane molecules. The C and O 1s photoelectron spectra of CO2 in gas phase were also measured at 2.3 and 7.0 keV photon energy at Synchrotron SOLEIL and the spectra were analyzed using the model description. The limitations and applicability of the approach to adsorbates, interfaces and solids is briefly discussed.
  •  
8.
  • Pihlava, L., et al. (författare)
  • Photodissociation dynamics of halogenated aromatic molecules: the case of core-ionized tetrabromothiophene
  • 2021
  • Ingår i: Physical Chemistry Chemical Physics. - : Royal Society of Chemistry (RSC). - 1463-9076 .- 1463-9084. ; 23:37, s. 21249-21261
  • Tidskriftsartikel (refereegranskat)abstract
    • We studied the gas-phase photodissociation of a fully halogenated aromatic molecule, tetrabromothiophene, upon core-shell ionization by using synchrotron radiation and energy-resolved multiparticle coincidence spectroscopy. Photodynamics was initiated by the selective soft X-ray ionization of three elements - C, S, and Br - leading to the formation of dicationic states by Auger decay. From a detailed study of photodissociation upon Br 3d ionization, we formulate a general fragmentation scheme, where dissociation into neutral fragments and a pair of cations prevails, but dicationic species are also produced. We conclude that dicationic tetrabromothiophene typically undergoes deferred charge separation (with one of the ions being often Br+) that may be followed by secondary dissociation steps, depending on the available internal energy of the parent dication. Observations suggest that the ejection of neutral bromine atoms as the first step of deferred charge separation is a prevailing feature in dicationic dissociation, although sometimes in this step the C-Br bonds appear to remain intact and the thiophene ring is broken instead. Ionization-site-specific effects are observed particularly in doubly charged fragments and as large differences in the yields of the intact parent dication. We interpret these effects, using first-principles calculations and molecular dynamics simulations of core-hole states, as likely caused by the geometry changes during the core-hole lifetime.
  •  
9.
  • Wang, W., et al. (författare)
  • A new user-friendly materials science end station at the FinEstBeAMS beamline of MAX IV
  • 2022
  • Ingår i: Journal of Physics: Conference Series. - : IOP Publishing. - 1742-6588 .- 1742-6596. ; 2380
  • Konferensbidrag (refereegranskat)abstract
    • FinEstBeAMS is an atmospheric and materials science beamline located at the 1.5 GeV storage ring of the MAX IV Laboratory in Lund, Sweden. It offers a very wide photon energy range 4.5-1300 eV and radiation with different polarization characteristics. The beamline has three end stations installed at two branch lines. The new solid state end station (SSES) is described in this paper. It is a high-throughput apparatus with flexible sample preparation options for X-ray photoemission, angle-resolved photoemission, and X-ray absorption spectroscopy. Three examples of experiments at room temperature demonstrate the capabilities of the SSES in the research field of surface science and condensed matter physics.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-9 av 9

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy