SwePub
Sök i LIBRIS databas

  Extended search

WFRF:(Kulkarni Yashraj S.)
 

Search: WFRF:(Kulkarni Yashraj S.) > (2017) > Enzyme Architecture :

  • 1 of 1
  • Previous record
  • Next record
  •    To hitlist

Enzyme Architecture : Modeling the Operation of a Hydrophobic Clamp in Catalysis by Triosephosphate Isomerase

Kulkarni, Yashraj S. (author)
Uppsala universitet,Struktur- och molekylärbiologi,Science for Life Laboratory, SciLifeLab
Liao, Qinghua (author)
Uppsala universitet,Struktur- och molekylärbiologi,Science for Life Laboratory, SciLifeLab
Petrovic, Dusan (author)
Forschungszentrum Julich, Inst Complex Syst Struct Biochem, D-52425 Julich, Germany.
show more...
Krüger, Dennis M. (author)
Uppsala universitet,Struktur- och molekylärbiologi,Science for Life Laboratory, SciLifeLab
Strodel, Birgit (author)
Forschungszentrum Julich, Inst Complex Syst Struct Biochem, D-52425 Julich, Germany.;Heinrich Heine Univ Dusseldorf, Inst Theoret & Computat Chem, Univ Str 1, D-40225 Dusseldorf, Germany.
Amyes, Tina L. (author)
SUNY Buffalo, Dept Chem, Buffalo, NY 14260 USA.
Richard, John P. (author)
SUNY Buffalo, Dept Chem, Buffalo, NY 14260 USA.
Kamerlin, Shina C. L., 1981- (author)
Uppsala universitet,Science for Life Laboratory, SciLifeLab,Struktur- och molekylärbiologi
show less...
 (creator_code:org_t)
2017-07-19
2017
English.
In: Journal of the American Chemical Society. - : American Chemical Society (ACS). - 0002-7863 .- 1520-5126. ; 139:30, s. 10514-10525
  • Journal article (peer-reviewed)
Abstract Subject headings
Close  
  • Triosephosphate isomerase (TIM) is a proficient catalyst of the reversible isomerization of dihydroxyacetone phosphate (DHAP) to D-glyceraldehyde phosphate (GAP), via general base catalysis by E165. Historically, this enzyme has been an extremely important model system for understanding the fundamentals of biological catalysis. TIM is activated through an energetically demanding conformational change, which helps position the side chains of two key hydrophobic residues (1170 and L230), over the carboxylate side chain of E165. This is critical both for creating a hydrophobic pocket for the catalytic base and for maintaining correct active site architecture. Truncation of these residues to alanine causes significant falloffs in TIM's catalytic activity, but experiments have failed to provide a full description of the action of this clamp in promoting substrate deprotonation. We perform here detailed empirical valence bond calculations of the TIM-catalyzed deprotonation of DHAP and GAP by both wild type TIM and its 1170A, L230A, and 1170A/L230A mutants, obtaining exceptional quantitative agreement with experiment. Our calculations provide a linear free energy relationship, with slope 0.8, between the activation barriers and Gibbs free energies for these TIM-catalyzed reactions. We conclude that these clamping side chains minimize the Gibbs free energy for substrate deprotonation, and that the effects on reaction driving force are largely expressed at the transition state for proton transfer. Our combined analysis of previous experimental and current computational results allows us to provide an overview of the breakdown of ground-state and transition state effects in enzyme catalysis in unprecedented detail, providing a molecular description of the operation of a hydrophobic clamp in triosephosphate isomerase.

Subject headings

NATURVETENSKAP  -- Kemi (hsv//swe)
NATURAL SCIENCES  -- Chemical Sciences (hsv//eng)

Publication and Content Type

ref (subject category)
art (subject category)

Find in a library

To the university's database

  • 1 of 1
  • Previous record
  • Next record
  •    To hitlist

Search outside SwePub

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view