SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Lal M.) srt2:(2000-2004)"

Search: WFRF:(Lal M.) > (2000-2004)

  • Result 1-11 of 11
Sort/group result
   
EnumerationReferenceCoverFind
1.
  •  
2.
  •  
3.
  • Aizman, O., et al. (author)
  • Ouabain, a steroid hormone that signals with slow calcium oscillations
  • 2001
  • In: Proceedings of the National Academy of Sciences of the United States of America. - : Proceedings of the National Academy of Sciences. - 0027-8424 .- 1091-6490. ; 98:23, s. 13420-13424
  • Journal article (peer-reviewed)abstract
    • The plant-derived steroid, digoxin, a specific inhibitor of Na,K-ATPase, has been used for centuries in the treatment of heart disease. Recent studies demonstrate the presence of a digoxin analog, ouabain, in mammalian tissue, but its biological role has not been elucidated. Here, we show in renal epithelial cells that ouabain, in doses causing only partial Na,K-ATPase inhibition, acts as a biological inducer of regular, low-frequency intracellular calcium ([Ca2+](i)) oscillations that elicit activation of the transcription factor, NF-KB. Partial inhibition of Na,K-ATPase using low extracellular K+ and depolarization of cells did not have these effects. Incubation of cells in Ca2+-free media, inhibition of voltage-gated calcium channels, inositol triphosphate receptor antagonism, and redistribution of actin to a thick layer adjacent to the plasma membrane abolished [Ca2+](i) oscillations, indicating that they were caused by a concerted action of inositol triphosphate receptors and capacitative calcium entry via plasma membrane channels. Blockade of ouabain-induced [C-a2+](i) oscillations prevented activation of NF-kappaB. The results demonstrate a new mechanism for steroid signaling via plasma membrane receptors and underline a novel role for the steroid hormone, ouabain, as a physiological inducer of [Ca2+](i) oscillations involved in transcriptional regulation in mammalian cells.
  •  
4.
  • Almqvist, Nils, et al. (author)
  • Micromechanical and structural properties of a pennate diatom investigated by atomic force microscopy
  • 2001
  • In: Journal of Microscopy. - : Wiley. - 0022-2720 .- 1365-2818. ; 202:3, s. 518-532
  • Journal article (peer-reviewed)abstract
    • The mechanisms behind natural nanofabrication of highly structured silicas are increasingly being investigated. We have explored the use of a standard Nanoscope III Multimode atomic force microscope (AFM) to study the silica shell of diatoms. The delicate structures of the shell surface of the diatom Navicula pelliculosa (Breb.) Hilse were imaged and the shell's micromechanical properties were measured semi-quantitatively with a resolution down to approximately 10 nm. The technique to measure elasticity and hardness with the AFM was demonstrated to be useable even on these hard glass-like surfaces, Different experimental configurations and evaluation methods were tested, They gave a consistent result of the shell micromechanical properties, The first results showed that the diatom shell's overall hardness and elasticity was similar to that of known silicas. However, regions with different mechanical proper ties were distinguished. The elastic modulus varied from 7 to 20 GPa, from 20 to 100 GPa and from 30 to hundreds of GPa depending on the location. In general, the hardness measurements showed similar spatial differences, The hardness values ranged from 1 to 12 GPa but one specific part of the shell was even harder. Hence, certain localized regions of the shell were significantly harder or more elastic. These regions coincide with known characteristic features and mechanisms appearing at the different stages of the shell's growth. These results show that this method serves as a complementary tool in the study of silica biomineralization, and can detect eventual crystalline phases.
  •  
5.
  •  
6.
  • Lal, M. A., et al. (author)
  • Role of oxidative stress in advanced glycation end product-induced mesangial cell activation
  • 2002
  • In: Kidney International. - : Elsevier BV. - 0085-2538 .- 1523-1755. ; 61:6, s. 2006-2014
  • Journal article (peer-reviewed)abstract
    • Background. Levels of advanced glycation end products (AGE) are elevated in individuals with advancing age, renal failure, and diabetes, and accumulation of these molecules may contribute to disease progression. The mechanism by which AGE proteins alter glomerular mesangial cell function, however, is not completely understood. The present study assessed the involvement of oxidative stress in AGE-dependent mesangial cell signaling events. Methods. Primary cultures of rat renal mesangial cells were exposed to in vitro AGE-BSA and H-2 O-2 . Nuclear factor-kappaB (NF-kappaB) and protein kinase C (PKC) isoform activation were studied using confocal microscopy and Western blotting. Quantitative polymerase chain reaction (PCR) was used to measure transforming growth factor-beta1 (TGF-beta1) levels. The involvement of oxidative stress was assessed by supplementing or compromising cellular antioxidant capacity. Results. NF-kappaB was dose-dependently activated by AGE. PKC activation was not involved in this response, but analysis of PKC-beta1 activation showed a stimulatory effect of AGE proteins on this isoform. Transcription of TGF-beta1 was stimulated by AGE and was prevented by PKC inhibition. Challenge with H-2 O-2 had similar downstream effects on mesangial cell signaling. Antioxidants, vitamin E and nitecapone, prevented AGE-dependent NF-kappaB activation and normalized PKC activity and associated TGF-beta1 transcription. Depletion of the intracellular antioxidant, glutathione, effectively lowered the AGE concentration needed for mesangial cell activation of NF-kappaB and PKC-beta1. Treatment with a suboptimal AGE dose, under glutathione-depleted conditions, revealed a synergistic effect on both parameters. Conclusion. The results support a central role for oxidative stress in AGE-dependent mesangial cell signaling and emphasize the importance of ROS in determining cell responsiveness.
  •  
7.
  •  
8.
  •  
9.
  •  
10.
  • Miyakawa-Naito, A., et al. (author)
  • Cell signaling Microdomain with Na,K-ATPase and inositol 1,4,5-trisphosphate receptor generates calcium oscillations
  • 2003
  • In: Journal of Biological Chemistry. - 0021-9258 .- 1083-351X. ; 17:4, s. A43-A43
  • Journal article (peer-reviewed)abstract
    • Recent studies indicate novel roles for the ubiquitous ion pump, Na,K-ATPase, in addition to its function as a key regulator of intracellular sodium and potassium concentration. We have previously demonstrated that ouabain, the endogenous ligand of Na, K-ATPase, can trigger intracellular Ca2+ oscillations, a versatile intracellular signal controlling a diverse range of cellular processes. Here we report that Na, K-ATPase and inositol 1,4,5-trisphosphate (InsP(3)) receptor (InsP(3)R) form a cell signaling microdomain that, in the presence of ouabain, generates slow Ca2+ oscillations in renal cells. Using fluorescent resonance energy transfer ( FRET) measurements, we detected a close spatial proximity between Na, K-ATPase and InsP(3)R. Ouabain significantly enhanced FRET between Na, K-ATPase and InsP(3)R. The FRET effect and ouabain-induced Ca2+ oscillations were not observed following disruption of the actin cytoskeleton. Partial truncation of the NH2 terminus of Na, K-ATPase catalytic alpha1-subunit abolished Ca2+ oscillations and downstream activation of NF-kappaB. Ouabain-induced Ca2+ oscillations occurred in cells expressing an InsP3 sponge and were hence independent of InsP3 generation. Thus, we present a novel principle for a cell signaling microdomain where an ion pump serves as a receptor.
  •  
11.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-11 of 11

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view