SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Lamb G.) srt2:(2010-2014)"

Search: WFRF:(Lamb G.) > (2010-2014)

  • Result 1-5 of 5
Sort/group result
   
EnumerationReferenceCoverFind
1.
  •  
2.
  • Feroci, M., et al. (author)
  • The large observatory for x-ray timing
  • 2014
  • In: Proceedings of SPIE - The International Society for Optical Engineering. - : SPIE. - 9780819496126
  • Conference paper (peer-reviewed)abstract
    • The Large Observatory For x-ray Timing (LOFT) was studied within ESA M3 Cosmic Vision framework and participated in the final downselection for a launch slot in 2022-2024. Thanks to the unprecedented combination of effective area and spectral resolution of its main instrument, LOFT will study the behaviour of matter under extreme conditions, such as the strong gravitational field in the innermost regions of accretion flows close to black holes and neutron stars, and the supranuclear densities in the interior of neutron stars. The science payload is based on a Large Area Detector (LAD, 10 m2 effective area, 2-30 keV, 240 eV spectral resolution, 1° collimated field of view) and a Wide Field Monitor (WFM, 2-50 keV, 4 steradian field of view, 1 arcmin source location accuracy, 300 eV spectral resolution). The WFM is equipped with an on-board system for bright events (e.g. GRB) localization. The trigger time and position of these events are broadcast to the ground within 30 s from discovery. In this paper we present the status of the mission at the end of its Phase A study.
  •  
3.
  • Feroci, M., et al. (author)
  • LOFT - The large observatory for x-ray timing
  • 2012
  • In: Proceedings of SPIE - The International Society for Optical Engineering. - : SPIE - International Society for Optical Engineering. - 9780819491442 ; , s. 84432D-
  • Conference paper (peer-reviewed)abstract
    • The LOFT mission concept is one of four candidates selected by ESA for the M3 launch opportunity as Medium Size missions of the Cosmic Vision programme. The launch window is currently planned for between 2022 and 2024. LOFT is designed to exploit the diagnostics of rapid X-ray flux and spectral variability that directly probe the motion of matter down to distances very close to black holes and neutron stars, as well as the physical state of ultradense matter. These primary science goals will be addressed by a payload composed of a Large Area Detector (LAD) and a Wide Field Monitor (WFM). The LAD is a collimated (<1 degree field of view) experiment operating in the energy range 2-50 keV, with a 10 m2 peak effective area and an energy resolution of 260 eV at 6 keV. The WFM will operate in the same energy range as the LAD, enabling simultaneous monitoring of a few-steradian wide field of view, with an angular resolution of <5 arcmin. The LAD and WFM experiments will allow us to investigate variability from submillisecond QPO's to yearlong transient outbursts. In this paper we report the current status of the project.
  •  
4.
  • Brownstein, Catherine A., et al. (author)
  • An international effort towards developing standards for best practices in analysis, interpretation and reporting of clinical genome sequencing results in the CLARITY Challenge
  • 2014
  • In: Genome Biology. - : Springer Science and Business Media LLC. - 1465-6906 .- 1474-760X. ; 15:3, s. R53-
  • Journal article (peer-reviewed)abstract
    • Background: There is tremendous potential for genome sequencing to improve clinical diagnosis and care once it becomes routinely accessible, but this will require formalizing research methods into clinical best practices in the areas of sequence data generation, analysis, interpretation and reporting. The CLARITY Challenge was designed to spur convergence in methods for diagnosing genetic disease starting from clinical case history and genome sequencing data. DNA samples were obtained from three families with heritable genetic disorders and genomic sequence data were donated by sequencing platform vendors. The challenge was to analyze and interpret these data with the goals of identifying disease-causing variants and reporting the findings in a clinically useful format. Participating contestant groups were solicited broadly, and an independent panel of judges evaluated their performance. Results: A total of 30 international groups were engaged. The entries reveal a general convergence of practices on most elements of the analysis and interpretation process. However, even given this commonality of approach, only two groups identified the consensus candidate variants in all disease cases, demonstrating a need for consistent fine-tuning of the generally accepted methods. There was greater diversity of the final clinical report content and in the patient consenting process, demonstrating that these areas require additional exploration and standardization. Conclusions: The CLARITY Challenge provides a comprehensive assessment of current practices for using genome sequencing to diagnose and report genetic diseases. There is remarkable convergence in bioinformatic techniques, but medical interpretation and reporting are areas that require further development by many groups.
  •  
5.
  • Greenhalf, William, et al. (author)
  • Pancreatic Cancer hENT1 Expression and Survival From Gemcitabine in Patients From the ESPAC-3 Trial
  • 2014
  • In: Journal of the National Cancer Institute. - : Oxford University Press (OUP). - 0027-8874 .- 1460-2105. ; 106:1, s. djt347-
  • Journal article (peer-reviewed)abstract
    • Background Human equilibrative nucleoside transporter 1 (hENT1) levels in pancreatic adenocarcinoma may predict survival in patients who receive adjuvant gemcitabine after resection. Methods Microarrays from 434 patients randomized to chemotherapy in the ESPAC-3 trial (plus controls from ESPAC-1/3) were stained with the 10D7G2 anti-hENT1 antibody. Patients were classified as having high hENT1 expression if the mean H score for their cores was above the overall median H score (48). High and low hENT1-expressing groups were compared using Kaplan-Meier curves, log-rank tests, and Cox proportional hazards models. All statistical tests were two-sided. Results Three hundred eighty patients (87.6%) and 1808 cores were suitable and included in the final analysis. Median overall survival for gemcitabine-treated patients (n = 176) was 23.4 (95% confidence interval [CI] = 18.3 to 26.0) months vs 23.5 (95% CI = 19.8 to 27.3) months for 176 patients treated with 5-fluorouracil/folinic acid (months vs 23.5 (95% CI = 19.8 to 27.3) months for 176 patients treated with 5-fluorouracil/folinic acid (chi(2)(1)=0.24; P = .62). Median survival for patients treated with gemcitabine was 17.1 (95% CI = 14.3 to 23.8) months for those with low hENT1 expression vs 26.2 (95% CI = 21.2 to 31.4) months for those with high hENT1 expression (chi(2)(1)=9.87; P = .002). For the 5-fluorouracil group, median survival was 25.6 (95% CI = 20.1 to 27.9) and 21.9 (95% CI = 16.0 to 28.3) months for those with low and high hENT1 expression, respectively (chi(2)(1) = 0.83; P = .36). hENT1 levels were not predictive of survival for the 28 patients of the observation group (chi(2)(1) = 0.37; P = .54). Multivariable analysis confirmed hENT1 expression as a predictive marker in gemcitabine-treated (Wald chi(2)(1) = 9.16; P = .003) but not 5-fluorouracil-treated (Wald chi(2)(1) = 1.22; P = .27) patients. Conclusions Subject to prospective validation, gemcitabine should not be used for patients with low tumor hENT1 expression.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-5 of 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view