SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Lambe T.) srt2:(2015-2019)"

Sökning: WFRF:(Lambe T.) > (2015-2019)

  • Resultat 1-5 av 5
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Buchholz, Angela, et al. (författare)
  • Insights into the O : C-dependent mechanisms controlling the evaporation of alpha-pinene secondary organic aerosol particles
  • 2019
  • Ingår i: Atmospheric Chemistry And Physics. - : Copernicus GmbH. - 1680-7316 .- 1680-7324. ; 19:6, s. 4061-4073
  • Tidskriftsartikel (refereegranskat)abstract
    • The volatility of oxidation products of volatile organic compounds (VOCs) in the atmosphere is a key factor to determine if they partition into the particle phase contributing to secondary organic aerosol (SOA) mass. Thus, linking volatility and measured particle composition will provide insights into SOA formation and its fate in the atmosphere. We produced alpha-pinene SOA with three different oxidation levels (characterized by average oxygen-to-carbon ratio; (O:C) over bar = 0.53, 0.69, and 0.96) in an oxidation flow reactor. We investigated the particle volatility by isothermal evaporation in clean air as a function of relative humidity (RH < 2 %, 40 %, and 80 %) and used a filter-based thermal desorption method to gain volatility and chemical composition information. We observed reduced particle evaporation for particles with increasing <(O:C )over bar> ratio, indicating that particles become more resilient to evaporation with oxidative aging. Particle evaporation was increased in the presence of water vapour and presumably particulate water; at the same time the resistance of the residual particles to thermal desorption was increased as well. For SOA with (O:C ) over bar = 0.96, the unexpectedly large increase in mean thermal desorption temperature and changes in the thermogram shapes under wet conditions (80 % RH) were an indication of aqueous phase chemistry. For the lower (O:C ) over bar cases, some water-induced composition changes were observed. However, the enhanced evaporation under wet conditions could be explained by the reduction in particle viscosity from the semi-solid to liquid-like range, and the observed higher desorption temperature of the residual particles is a direct consequence of the increased removal of high-volatility and the continued presence of low-volatility compounds.
  •  
2.
  • Pajunoja, Aki, et al. (författare)
  • Adsorptive uptake of water by semisolid secondary organic aerosols
  • 2015
  • Ingår i: Geophysical Research Letters. - 0094-8276 .- 1944-8007. ; 42:8, s. 3063-3068
  • Tidskriftsartikel (refereegranskat)abstract
    • Aerosol climate effects are intimately tied to interactions with water. Here we combine hygroscopicity measurements with direct observations about the phase of secondary organic aerosol (SOA) particles to show that water uptake by slightly oxygenated SOA is an adsorption-dominated process under subsaturated conditions, where low solubility inhibits water uptake until the humidity is high enough for dissolution to occur. This reconciles reported discrepancies in previous hygroscopicity closure studies. We demonstrate that the difference in SOA hygroscopic behavior in subsaturated and supersaturated conditions can lead to an effect up to about 30% in the direct aerosol forcinghighlighting the need to implement correct descriptions of these processes in atmospheric models. Obtaining closure across the water saturation point is therefore a critical issue for accurate climate modeling.
  •  
3.
  •  
4.
  • Rastak, Narges, et al. (författare)
  • Microphysical explanation of the RH-dependent water affinity of biogenic organic aerosol and its importance for climate
  • 2017
  • Ingår i: Geophysical Research Letters. - 0094-8276 .- 1944-8007. ; 44:10, s. 5167-5177
  • Tidskriftsartikel (refereegranskat)abstract
    • A large fraction of atmospheric organic aerosol (OA) originates from natural emissions that are oxidized in the atmosphere to form secondary organic aerosol (SOA). Isoprene (IP) and monoterpenes (MT) are the most important precursors of SOA originating from forests. The climate impacts from OA are currently estimated through parameterizations of water uptake that drastically simplify the complexity of OA. We combine laboratory experiments, thermodynamic modeling, field observations, and climate modeling to (1) explain the molecular mechanisms behind RH-dependent SOA water-uptake with solubility and phase separation; (2) show that laboratory data on IP- and MT-SOA hygroscopicity are representative of ambient data with corresponding OA source profiles; and (3) demonstrate the sensitivity of the modeled aerosol climate effect to assumed OA water affinity. We conclude that the commonly used single-parameter hygroscopicity framework can introduce significant error when quantifying the climate effects of organic aerosol. The results highlight the need for better constraints on the overall global OA mass loadings and its molecular composition, including currently underexplored anthropogenic and marine OA sources. Plain Language Summary The interaction of airborne particulate matter (aerosols) with water is of critical importance for processes governing climate, precipitation, and public health. It also modulates the delivery and bioavailability of nutrients to terrestrial and oceanic ecosystems. We present a microphysical explanation to the humidity-dependent water uptake behavior of organic aerosol, which challenges the highly simplified theoretical descriptions used in, e.g., present climate models. With the comprehensive analysis of laboratory data using molecular models, we explain the microphysical behavior of the aerosol over the range of humidity observed in the atmosphere, in a way that has never been done before. We also demonstrate the presence of these phenomena in the ambient atmosphere from data collected in the field. We further show, using two state-of-the-art climate models, that misrepresenting the water affinity of atmospheric organic aerosol can lead to significant biases in the estimates of the anthropogenic influence on climate.
  •  
5.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-5 av 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy