SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Lappalainen H.K.) srt2:(2015-2019)"

Sökning: WFRF:(Lappalainen H.K.) > (2015-2019)

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Boy, M., et al. (författare)
  • Interactions between the atmosphere, cryosphere, and ecosystems at northern high latitudes
  • 2019
  • Ingår i: Atmospheric Chemistry and Physics. - : Copernicus GmbH. - 1680-7316 .- 1680-7324. ; 19:3, s. 2015-2061
  • Tidskriftsartikel (refereegranskat)abstract
    • The Nordic Centre of Excellence CRAICC (Cryosphere-Atmosphere Interactions in a Changing Arctic Climate), funded by NordForsk in the years 2011-2016, is the largest joint Nordic research and innovation initiative to date, aiming to strengthen research and innovation regarding climate change issues in the Nordic region. CRAICC gathered more than 100 scientists from all Nordic countries in a virtual centre with the objectives of identifying and quantifying the major processes controlling Arctic warming and related feedback mechanisms, outlining strategies to mitigate Arctic warming, and developing Nordic Earth system modelling with a focus on short-lived climate forcers (SLCFs), including natural and anthropogenic aerosols. The outcome of CRAICC is reflected in more than 150 peer-reviewed scientific publications, most of which are in the CRAICC special issue of the journal Atmospheric Chemistry and Physics. This paper presents an overview of the main scientific topics investigated in the centre and provides the reader with a state-of-the-art comprehensive summary of what has been achieved in CRAICC with links to the particular publications for further detail. Faced with a vast amount of scientific discovery, we do not claim to completely summarize the results from CRAICC within this paper, but rather concentrate here on the main results which are related to feedback loops in climate change-cryosphere interactions that affect Arctic amplification.
  •  
2.
  • Kulmala, M., et al. (författare)
  • Introduction : The Pan-Eurasian Experiment (PEEX) - multidisciplinary, multiscale and multicomponent research and capacity-building initiative
  • 2015
  • Ingår i: Atmospheric Chemistry And Physics. - : Copernicus GmbH. - 1680-7316 .- 1680-7324. ; 15:22, s. 13085-13096
  • Tidskriftsartikel (refereegranskat)abstract
    • The Pan-Eurasian Experiment (PEEX) is a multidisciplinary, multiscale and multicomponent research, research infrastructure and capacity-building program. PEEX has originated from a bottom-up approach by the science communities and is aiming at resolving the major uncertainties in Earth system science and global sustainability issues concerning the Arctic and boreal pan-Eurasian regions, as well as China. The vision of PEEX is to solve interlinked, global grand challenges influencing human well-being and societies in northern Eurasia and China. Such challenges include climate change; air quality; biodiversity loss; urbanization; chemicalization; food and freshwater availability; energy production; and use of natural resources by mining, industry, energy production and transport sectors. Our approach is integrative and supra-disciplinary, recognizing the important role of the Arctic and boreal ecosystems in the Earth system. The PEEX vision includes establishing and maintaining long-term, coherent and coordinated research activities as well as continuous, comprehensive research and educational infrastructure and related capacity-building across the PEEX domain. In this paper we present the PEEX structure and summarize its motivation, objectives and future outlook.
  •  
3.
  • Torbert, R. B., et al. (författare)
  • The FIELDS Instrument Suite on MMS : Scientific Objectives, Measurements, and Data Products
  • 2016
  • Ingår i: Space Science Reviews. - : Springer Science+Business Media B.V.. - 0038-6308 .- 1572-9672. ; 199:1-4, s. 105-135
  • Forskningsöversikt (refereegranskat)abstract
    • The FIELDS instrumentation suite on the Magnetospheric Multiscale (MMS) mission provides comprehensive measurements of the full vector magnetic and electric fields in the reconnection regions investigated by MMS, including the dayside magnetopause and the night-side magnetotail acceleration regions out to 25 Re. Six sensors on each of the four MMS spacecraft provide overlapping measurements of these fields with sensitive cross-calibrations both before and after launch. The FIELDS magnetic sensors consist of redundant flux-gate magnetometers (AFG and DFG) over the frequency range from DC to 64 Hz, a search coil magnetometer (SCM) providing AC measurements over the full whistler mode spectrum expected to be seen on MMS, and an Electron Drift Instrument (EDI) that calibrates offsets for the magnetometers. The FIELDS three-axis electric field measurements are provided by two sets of biased double-probe sensors (SDP and ADP) operating in a highly symmetric spacecraft environment to reduce significantly electrostatic errors. These sensors are complemented with the EDI electric measurements that are free from all local spacecraft perturbations. Cross-calibrated vector electric field measurements are thus produced from DC to 100 kHz, well beyond the upper hybrid resonance whose frequency provides an accurate determination of the local electron density. Due to its very large geometric factor, EDI also provides very high time resolution (similar to 1 ms) ambient electron flux measurements at a few selected energies near 1 keV. This paper provides an overview of the FIELDS suite, its science objectives and measurement requirements, and its performance as verified in calibration and cross-calibration procedures that result in anticipated errors less than 0.1 nT in B and 0.5 mV/m in E. Summaries of data products that result from FIELDS are also described, as well as algorithms for cross-calibration. Details of the design and performance characteristics of AFG/DFG, SCM, ADP, SDP, and EDI are provided in five companion papers.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy