SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Larsson Matilda) srt2:(2015-2019)"

Sökning: WFRF:(Larsson Matilda) > (2015-2019)

  • Resultat 1-39 av 39
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  • Larsson, David, et al. (författare)
  • An ex-vivo setup for characterization of atherosclerotic plaque using shear wave elastography and micro-computed tomography
  • 2016
  • Ingår i: IEEE International Ultrasonics Symposium, IUS. - : IEEE conference proceedings. - 9781467398978
  • Konferensbidrag (refereegranskat)abstract
    • Quantification of the mechanical properties of atherosclerotic plaque has shown to be important in assessing carotid artery plaque vulnerability. For such, shear wave elastography (SWE) has been applied on both in-vitro and in-vivo setups. The aim of this study was to build an ex-vivo setup for combined evaluation of plaque characteristics using SWE and micro-computed tomography (μCT). As a proof-of-concept of the constructed experimental setup, a single human carotid plaque specimen was extracted during carotid endarterectomy. The plaque was imaged in the μCT system, and subsequently imaged using SWE. For the SWE measurement, group and phase velocity was extracted from the obtained in-phase/quadrature data, with its spatial distribution being compared to anatomical features visible in the μCT images. The results indicated wave velocity changes at boundaries identified in the μCT, with group velocity data slightly increasing when entering a calcified nodule. Additionally, μCT images seemed to provide good contrast between several plaque constituens using the defined imaging settings. Overall, the study represents a proof-of-concept for detailed ex-vivo plaque analysis using combined SWE and μCT, with obtained wave speed and shear modulus values falling within observed values for atherosclerotic plaque tissue. With an experimental setup defined, future studies on carotid plaque behaviour both in SWE and μCT is enabled, where a large-scale plaque study could be performed to investigate the ability of SWE to differentiate between different plaque types.
  •  
3.
  • Larsson, David, et al. (författare)
  • Estimation of left ventricular blood flow parameters : Clinical application of patient-specific CFD simulations from 4D echocardiography
  • 2017
  • Ingår i: Medical Imaging 2017. - : SPIE - International Society for Optical Engineering. - 9781510607231
  • Konferensbidrag (refereegranskat)abstract
    • Echocardiography is the most commonly used image modality in cardiology, assessing several aspects of cardiac viability. The importance of cardiac hemodynamics and 4D blood flow motion has recently been highlighted, however such assessment is still difficult using routine echo-imaging. Instead, combining imaging with computational fluid dynamics (CFD)-simulations has proven valuable, but only a few models have been applied clinically. In the following, patient-specific CFD-simulations from transthoracic dobutamin stress echocardiography have been used to analyze the left ventricular 4D blood flow in three subjects: two with normal and one with reduced left ventricular function. At each stress level, 4D-images were acquired using a GE Vivid E9 (4VD, 1.7MHz/3.3MHz) and velocity fields simulated using a presented pathway involving endocardial segmentation, valve position identification, and solution of the incompressible Navier-Stokes equation. Flow components defined as direct flow, delayed ejection flow, retained inflow, and residual volume were calculated by particle tracing using 4th-order Runge-Kutta integration. Additionally, systolic and diastolic average velocity fields were generated. Results indicated no major changes in average velocity fields for any of the subjects. For the two subjects with normal left ventricular function, increased direct flow, decreased delayed ejection flow, constant retained inflow, and a considerable drop in residual volume was seen at increasing stress. Contrary, for the subject with reduced left ventricular function, the delayed ejection flow increased whilst the retained inflow decreased at increasing stress levels. This feasibility study represents one of the first clinical applications of an echo-based patient-specific CFD-model at elevated stress levels, and highlights the potential of using echo-based models to capture highly transient flow events, as well as the ability of using simulation tools to study clinically complex phenomena. With larger patient studies planned for the future, and with the possibility of adding more anatomical features into the model framework, the current work demonstrates the potential of patient-specific CFD-models as a tool for quantifying 4D blood flow in the heart.
  •  
4.
  • Larsson, David, et al. (författare)
  • Multimodal validation of patient-specific intraventricular flow simulations from 4D echocardiography
  • 2016
  • Ingår i: 2016 IEEE INTERNATIONAL ULTRASONICS SYMPOSIUM (IUS). - : IEEE conference proceedings. - 9781467398978
  • Konferensbidrag (refereegranskat)abstract
    • The combination of refined medical imaging techniques and computational fluid dynamics (CFD) models has enabled the study of complex flow behavior on a highly regional level. Recently, we have developed a platform for patient-specific CFD modelling of blood flow in the left ventricle (LV), with input data and required boundary conditions acquired from 4D echocardiography. The platform robustness has been evaluated with respect to input variable variations, but for any clinical implementation model flow validation is essential. Therefore, the aim of this study is to evaluate the accuracy of the patient-specific CFD model against multimodal image-based flow measurements. For the validation, 4D echocardiography was acquired from two healthy subjects, from which LV velocity fields were simulated. In-vivo flows from the same two subjects were then acquired by pulsed wave (PW) Doppler imaging over both LV-valves, and by cine phase-contract magnetic resonance imaging (PC-MRI) at eight defined anatomical planes in the LV. By fusing PC-MRI and the ultrasound acquisitions using a three-chamber alignment algorithm, simulated and measured flows were quantitatively compared. General flow pattern correspondence was observed, with a mean error of 1.4 cm/s and root mean square deviation of 5.7 cm/s for all measured PC-MRI LV-planes. For the PW-Doppler comparison, a mean error of 3.6 cm/s was reported. Overall, the following work represents a validation of the proposed patient-specific CFD platform, and the agreement with clinical data highlight the potential for future clinical use of the models.
  •  
5.
  • Larsson, David, et al. (författare)
  • Patient-specific flow simulation of the left ventricle from 4D echocardiography - feasibility and robustness evaluation
  • 2015
  • Ingår i: 2015 IEEE INTERNATIONAL ULTRASONICS SYMPOSIUM (IUS). - : IEEE. - 9781479981823
  • Konferensbidrag (refereegranskat)abstract
    • In recent years, computational fluid dynamics (CFD) simulations on in-silico models of the heart have provided a valuable insight into cardiac hemodynamic behaviour. However, so far most models have been either based on simplified geometries or on imaging acquisitions with relatively low temporal resolution. It has been suggested that models based entirely on subject-specific ultrasonic images should be used to capture transient flow changes. Therefore, the aim of this study is to present a pathway from routine 4D echocardiography to a patient-specific flow simulation of the left ventricle (LV), evaluating the model robustness and clinical feasibility. The created pathway consisted of initial LV segmentation and mitral/aortic valve positioning, being subsequently used as input for the CFD simulations (based on solving the Navier-Stokes equation using an Arbitrary Lagrangian-Eulerian approach). The output consisted of 4D blood flow velocities and relative pressures in the entire LV. On five subjects, the model robustness was evaluated with regards to variations in singular boundary conditions. The clinical feasibility of the output was compared to clinical PW Doppler measurements and, as a proof-of-concept, synthetic contrast enhanced ultrasound images were simulated on the flow field using the COLE-method. Results indicated a relatively robust model, with variations in regional flow of approximately 5.1/6.2% and 9.7/7.0% for healthy and pathological subject respectively (end diastole/end systole). Furthermore, showing similar behaviour to clinical Doppler measurements the technique serves as a promising tool for future clinical investigations. Additionally, the ability of simulating synthetic ultrasound images further underlines the applicability of the pathway, being potentially useful in studies on improved echocardiographic image analysis.
  •  
6.
  • Larsson, David, et al. (författare)
  • Patient-Specific Left Ventricular Flow Simulations From Transthoracic Echocardiography : Robustness Evaluation and Validation Against Ultrasound Doppler and Magnetic Resonance Imaging
  • 2017
  • Ingår i: IEEE Transactions on Medical Imaging. - : Institute of Electrical and Electronics Engineers (IEEE). - 0278-0062 .- 1558-254X. ; 36:11, s. 2261-2275
  • Tidskriftsartikel (refereegranskat)abstract
    • The combination of medical imaging with computational fluid dynamics (CFD) has enabled the study of 3D blood flow on a patient-specificlevel. However, with models based on gated high-resolution data, the study of transient flows, and any model implementation into routine cardiac care, is challenging. The present paper presents a novel pathway for patient-specific CFD modelling of the left ventricle (LV), using 4D transthoracic echocardiography (TTE) as input modality. To evaluate the clinical usability, two sub-studies were performed. First, a robustness evaluation was performed where repeated models with alternating input variables were generated for 6 subjects and changes in simulated output quantified. Second, a validation study was carried out where the pathway accuracy was evaluated against pulsed-wave Doppler (100 subjects), and 2D through-plane phase-contrast magnetic resonance imaging measurements over 7 intraventricular planes (6 subjects). The robustness evaluation indicated a model deviation of <12%, with highest regional and temporal deviations at apical segments and at peak systole, respectively. The validation study showed an error of < 11% (velocities < 10 cm/s) for all subjects, with no significant regional or temporal differences observed. With the patient-specific pathway shown to provide robust output with high accuracy, and with the pathway dependent only on 4DTTE, the method has a high potential to be used within future clinical studies on 3D intraventricular flowpatterns. To this, future model developments in the form of e.g. anatomically accurate LV valves may further enhance the clinical value of the simulations.
  •  
7.
  • Maksuti, Elira, et al. (författare)
  • ARTERIAL STIFFNESS ESTIMATION BY SHEAR WAVE ELASTOGRAPHY : VALIDATION IN PHANTOMS WITH MECHANICAL TESTING
  • 2016
  • Ingår i: Ultrasound in Medicine and Biology. - : Elsevier BV. - 0301-5629 .- 1879-291X. ; 42:1, s. 308-321
  • Tidskriftsartikel (refereegranskat)abstract
    • Arterial stiffness is an independent risk factor found to correlate with a wide range of cardiovascular diseases. It has been suggested that shear wave elastography (SWE) can be used to quantitatively measure local arterial shear modulus, but an accuracy assessment of the technique for arterial applications has not yet been performed. In this study, the influence of confined geometry on shear modulus estimation, by both group and phase velocity analysis, was assessed, and the accuracy of SWE in comparison with mechanical testing was measured in nine pressurized arterial phantoms. The results indicated that group velocity with an infinite medium assumption estimated shear modulus values incorrectly in comparison with mechanical testing in arterial phantoms (6.7 +/- 0.0 kPa from group velocity and 30.5 +/- 0.4 kPa from mechanical testing). To the contrary, SWE measurements based on phase velocity analysis (30.6 +/- 3.2 kPa) were in good agreement with mechanical testing, with a relative error between the two techniques of 8.8 +/- 6.0% in the shear modulus range evaluated (40-100 kPa). SWE by phase velocity analysis was validated to accurately measure stiffness in arterial phantoms.
  •  
8.
  • Maksuti, Elira, et al. (författare)
  • Strain and strain rate generated by shear wave elastography in an ex vivo porcine aorta
  • 2017
  • Ingår i: 2017 IEEE International Ultrasonics Symposium (IUS). - : IEEE Computer Society. - 9781538633830
  • Konferensbidrag (refereegranskat)abstract
    • In order to generate trackable shear waves in soft tissues, transmitted pulses in shear wave elastography (SWE) are longer than conventional clinical ultrasound pulses. Nevertheless, they typically obey mechanical and thermal regulatory limits. In arterial applications, specific safety concerns may arise, as acoustic radiation (ARF)-induced stresses and strain rates could potentially affect the arterial wall. The aim of this study was to assess ARF-induced strain and strain rates in ex vivo arteries. A porcine aorta (diameters 8.5 mm, wall thickness 1.2 mm) was pressurized by a saline-filled water column at 60 and 120 mmHg. A Verasonics V1 system and a L7-4 transducer were used to generate the ARF in the middle of the anterior wall (F-number = 1, push length = [100, 200, 300] μs) and to perform plane-wave imaging (10 kHz). Cumulative axial displacement was estimated using 2D auto-correlation. The axial strain rate was calculated as the time-derivative of the axial strain, obtained by spatial linear regression of the displacement inside the anterior wall. The ex vivo peak strain and strain rate were compared with peak strain and strain rate values induced by the blood pressure changes in two healthy individuals and two patients with coronary artery disease at rest and measured by a dedicated in house speckle tracking algorithm. ARF-induced ex vivo peak strains were in the range 0.3-1% and strain rates in the range 6-23 s-1. Peak values were more affected by longer push duration than pressurization level. In vivo physiological peak strain was 33% and strain rate was 2 s-1. ARF-induced strain rates in vivo are likely to be lower than those assessed in this ex vivo setup due to ultrasound attenuation and the effect of surrounding tissue. Therefore, the results of the performed study suggest that SWE could be used in a safe manner for arterial applications even though specific effects of high strain rates are to be explored.
  •  
9.
  • Maksuti, Elira, et al. (författare)
  • Strain and strain rate generated by shear wave elastography in ex vivo porcine aortas
  • 2017
  • Ingår i: IEEE International Ultrasonics Symposium, IUS. - : IEEE Computer Society. - 9781538633830
  • Konferensbidrag (refereegranskat)abstract
    • In shear wave elastography (SWE), acoustic radiation forces (ARF) are employed to generate shear waves within the tissue. Although the transmitted pulses are longer than those in conventional clinical ultrasound, they typically obey the mechanical and thermal regulatory limits. In arterial applications, specific safety concerns may arise, as ARF-induced stresses and strain rates could potentially affect the arterial wall. A previous simulation study (Doherty et al., J Biomech, 2013 Jan; 46(1):83-90) showed that stresses imposed by the ARF used in SWE are orders of magnitude lower than those caused by blood pressure. ARF-induced strain rates have not been investigated yet, therefore the aim of this study was to assess such strain rates in an ex vivo setup.
  •  
10.
  • Widman, Erik, et al. (författare)
  • Shear wave elastography plaque characterization with mechanical testing validation : a phantom study.
  • 2015
  • Ingår i: Physics in Medicine and Biology. - : IOP Publishing. - 0031-9155 .- 1361-6560. ; 60:8, s. 3151-3174
  • Tidskriftsartikel (refereegranskat)abstract
    • Determining plaque vulnerability is critical when selecting the most suitable treatment for patients with atherosclerotic plaque. Currently, clinical non-invasive ultrasound-based methods for plaque characterization are limited to visual assessment of plaque morphology and new quantitative methods are needed. In this study, shear wave elastography (SWE) was used to characterize hard and soft plaque mimicking inclusions in six common carotid artery phantoms by using phase velocity analysis in static and dynamic environments. The results were validated with mechanical tensile testing. In the static environment, SWE measured a mean shear modulus of 5.8±0.3kPa and 106.2±17.2kPa versus 3.3±0.5kPa and 98.3±3.4kPa measured by mechanical testing in the soft and hard plaques respectively. Furthermore, it was possible to measure the plaques' shear moduli throughout a simulated cardiac cycle. The results show good agreement between SWE and mechanical testing and indicate the possibility for in vivo arterial plaque characterization using SWE.
  •  
11.
  • Alvén, Jennifer, 1989, et al. (författare)
  • Shape-aware label fusion for multi-atlas frameworks
  • 2019
  • Ingår i: Pattern Recognition Letters. - : Elsevier BV. - 0167-8655. ; 124, s. 109-117
  • Tidskriftsartikel (refereegranskat)abstract
    • Despite of having no explicit shape model, multi-atlas approaches to image segmentation have proved to be a top-performer for several diverse datasets and imaging modalities. In this paper, we show how one can directly incorporate shape regularization into the multi-atlas framework. Unlike traditional multi-atlas methods, our proposed approach does not rely on label fusion on the voxel level. Instead, each registered atlas is viewed as an estimate of the position of a shape model. We evaluate and compare our method on two public benchmarks: (i) the VISCERAL Grand Challenge on multi-organ segmentation of whole-body CT images and (ii) the Hammers brain atlas of MR images for segmenting the hippocampus and the amygdala. For this wide spectrum of both easy and hard segmentation tasks, our experimental quantitative results are on par or better than state-of-the-art. More importantly, we obtain qualitatively better segmentation boundaries, for instance, preserving topology and fine structures.
  •  
12.
  • Alvén, Jennifer, 1989, et al. (författare)
  • Shape-aware multi-atlas segmentation
  • 2016
  • Ingår i: Proceedings - International Conference on Pattern Recognition. - 1051-4651. ; 0, s. 1101-1106
  • Konferensbidrag (refereegranskat)abstract
    • Despite of having no explicit shape model, multi-atlas approaches to image segmentation have proved to be a top-performer for several diverse datasets and imaging modalities. In this paper, we show how one can directly incorporate shape regularization into the multi-atlas framework. Unlike traditional methods, our proposed approach does not rely on label fusion on the voxel level. Instead, each registered atlas is viewed as an estimate of the position of a shape model. We evaluate and compare our method on two public benchmarks: (i) the VISCERAL Grand Challenge on multi-organ segmentation of whole-body CT images and (ii) the Hammers brain atlas of MR images for segmenting the hippocampus and the amygdala. For this wide spectrum of both easy and hard segmentation tasks, our experimental quantitative results are on par or better than state-of-the-art. More importantly, we obtain qualitatively better segmentation boundaries, for instance, preserving fine structures.
  •  
13.
  •  
14.
  • Fejne, Frida, 1986, et al. (författare)
  • Multiatlas Segmentation Using Robust Feature-Based Registration
  • 2017
  • Ingår i: , Cloud-Based Benchmarking of Medical Image Analysis. - Cham : Springer International Publishing. - 9783319496429 ; , s. 203-218
  • Bokkapitel (övrigt vetenskapligt/konstnärligt)abstract
    • This paper presents a pipeline which uses a multiatlas approach for multiorgan segmentation in whole-body CT images. In order to obtain accurate registrations between the target and the atlas images, we develop an adapted feature-based method which uses organ-specific features. These features are learnt during an offline preprocessing step, and thus, the algorithm still benefits from the speed of feature-based registration methods. These feature sets are then used to obtain pairwise non-rigid transformations using RANSAC followed by a thin-plate spline refinement or NiftyReg. The fusion of the transferred atlas labels is performed using a random forest classifier, and finally, the segmentation is obtained using graph cuts with a Potts model as interaction term. Our pipeline was evaluated on 20 organs in 10 whole-body CT images at the VISCERAL Anatomy Challenge, in conjunction with the International Symposium on Biomedical Imaging, Brooklyn, New York, in April 2015. It performed best on majority of the organs, with respect to the Dice index.
  •  
15.
  • Fröberg, Asa, et al. (författare)
  • High variability in strain estimation errors when using a commercial ultrasound speckle tracking algorithm on tendon tissue
  • 2016
  • Ingår i: Acta Radiologica. - : Sage Publications. - 0284-1851 .- 1600-0455. ; 57:10, s. 1223-1229
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Ultrasound speckle tracking offers a non-invasive way of studying strain in the free Achilles tendon where no anatomical landmarks are available for tracking. This provides new possibilities for studying injury mechanisms during sport activity and the effects of shoes, orthotic devices, and rehabilitation protocols on tendon biomechanics. Purpose: To investigate the feasibility of using a commercial ultrasound speckle tracking algorithm for assessing strain in tendon tissue. Material and Methods: A polyvinyl alcohol (PVA) phantom, three porcine tendons, and a human Achilles tendon were mounted in a materials testing machine and loaded to 4% peak strain. Ultrasound long-axis cine-loops of the samples were recorded. Speckle tracking analysis of axial strain was performed using a commercial speckle tracking software. Estimated strain was then compared to reference strain known from the materials testing machine. Two frame rates and two region of interest (ROI) sizes were evaluated. Results: Best agreement between estimated strain and reference strain was found in the PVA phantom (absolute error in peak strain: 0.21 +/- 0.08%). The absolute error in peak strain varied between 0.72 +/- 0.65% and 10.64 +/- 3.40% in the different tendon samples. Strain determined with a frame rate of 39.4Hz had lower errors than 78.6Hz as was the case with a 22mm compared to an 11mm ROI. Conclusion: Errors in peak strain estimation showed high variability between tendon samples and were large in relation to strain levels previously described in the Achilles tendon.
  •  
16.
  • Fröberg, Åsa, et al. (författare)
  • Altered patterns of displacement within the Achilles tendon following surgical repair
  • 2017
  • Ingår i: Knee Surgery, Sports Traumatology, Arthroscopy. - : Springer Science and Business Media LLC. - 0942-2056 .- 1433-7347. ; 25:6, s. 1857-1865
  • Tidskriftsartikel (refereegranskat)abstract
    • Ultrasound speckle tracking was used to compare tendon deformation patterns between uninjured and surgically repaired Achilles tendons at 14-27-month follow-up. The hypothesis was that the non-homogenous displacement pattern previously described in uninjured tendons, where displacement within deep layers of the tendons exceeds that of superficial layers, is altered following tendon rupture and subsequent surgical repair. In the first part of this study, an in-house-developed block-matching speckle tracking algorithm was evaluated for assessment of displacement on porcine flexor digitorum tendons. Displacement data from speckle tracking were compared to displacement data from manual tracking. In the second part of the study, eleven patients with previous unilateral surgically treated Achilles tendon rupture were investigated using ultrasound speckle tracking. The difference in superficial and deep tendon displacement was assessed. Displacement patterns in the surgically repaired and uninjured tendons were compared during passive motion (Thompson's squeeze test) and during active ankle dorsiflexion. The difference in peak displacement between superficial and deep layers was significantly (p < 0.01) larger in the uninjured tendons as compared to the surgically repaired tendons both during Thompson's test (-0.7 +/- 0.2 mm compared to -0.1 +/- 0.1 mm) and active dorsiflexion (3.3 +/- 1.1 mm compared to 0.3 +/- 0.2 mm). The evaluation of the speckle tracking algorithm showed correlations of r ae 0.89 between displacement data acquired from speckle tracking and the reference displacement acquired from manual tracking. Speckle tracking systematically underestimated the magnitude of displacement with coefficients of variation of less than 11.7%. Uninjured Achilles tendons display a non-uniform displacement pattern thought to reflect gliding between fascicles. This pattern was altered after a mean duration of 19 +/- 4 months following surgical repair of the tendon indicating that fascicle sliding is impaired. This may affect modulation of the action between different components of the triceps surae, which in turn may affect force transmission and tendon elasticity resulting in impaired function and risk of re-rupture.
  •  
17.
  • Kahl, Fredrik, 1972, et al. (författare)
  • Good Features for Reliable Registration in Multi-Atlas Segmentation
  • 2015
  • Ingår i: CEUR Workshop Proceedings. - 1613-0073. ; 1390:January, s. 12-17
  • Konferensbidrag (refereegranskat)abstract
    • This work presents a method for multi-organ segmentation in whole-body CT images based on a multi-atlas approach. A robust and efficient feature-based registration technique is developed which uses sparse organ specific features that are learnt based on their ability to register different organ types accurately. The best fitted feature points are used in RANSAC to estimate an affine transformation, followed by a thin plate spline refinement. This yields an accurate and reliable nonrigid transformation for each organ, which is independent of initialization and hence does not suffer from the local minima problem. Further, this is accomplished at a fraction of the time required by intensity-based methods. The technique is embedded into a standard multi-atlas framework using label transfer and fusion, followed by a random forest classifier which produces the data term for the final graph cut segmentation. For a majority of the classes our approach outperforms the competitors at the VISCERAL Anatomy Grand Challenge on segmentation at ISBI 2015.
  •  
18.
  • Larsson, Andreas, 1977-, et al. (författare)
  • Heat Angels and Paper Cups: Pupils’ Use of Metaphoric Relations When Engaging Thermal Cameras to Investigate Heat
  • 2019
  • Ingår i: Bridging Research and Practice in Science Education. Contributions from Science Education Research, vol 6.. - Cham : Springer. - 9783030172183 - 9783030172190 ; , s. 74-89
  • Bokkapitel (refereegranskat)abstract
    • Thermal science is a perennial obstacle for learners. Infrared camera technology provides an opportunity for pupils to confront challenging thermal ideas. From an embodied cognition perspective, sensory experiences form metaphoric relations that underpin conceptualisation and reasoning about abstract scientific phenomena. This study investigated eight groups of fourth grade pupils’ use of metaphoric relations when engaging thermal cameras to explore “heat” at a science centre. Pupils were videorecorded while collaboratively exploring thermal properties of the surroundings and during a thermos modelling exercise. Qualitative metaphor analyses of pupils’ dialogue and behaviour revealed various metaphoric and metonymic relations around spatial properties, colour, movement and change in their conceptualisation of thermal phenomena. “Heat” was almost exclusively conceptualised as a noun, manifested in utterances such as “harder for the heat to escape” and “it wants to get yellow”. In addition, pupils used colour as both a metonym and metaphor for heat and temperature. Expressions of heat as an entity were closely related to experiences of movement, indicating that spatial cognition is central to children’s conceptualisation of heat. Engagement with the cameras provided access to thermodynamic phenomena through unique sensory and nonsensory experiences. Future research will explore how these metaphoric relations can be exploited as a meaning-making resource in the classroom.
  •  
19.
  • Larsson, Matilda, et al. (författare)
  • Effect of hydrophobically modified graphene oxide on the properties of poly(3-hydroxybutyrate-co-4-hydroxybutyrate)
  • 2017
  • Ingår i: Polymer. - : Elsevier BV. - 0032-3861. ; 108, s. 66-77
  • Tidskriftsartikel (refereegranskat)abstract
    • Nanocomposites of poly(3-hydroxybutyrate-co-4-hydroxybutyrate) [P(3,4HB)] and hydrophobically modified graphene oxide (GO) were prepared via melt blending and characterised with respect to processability, polymer degradation, as well as thermal, rheological and mechanical properties. GO prepared via the modified Hummer’s method was alkylated by reactions with butyl-, octyl- and hexadecylamine, respectively. The successful functionalisation was verified by IR spectroscopy, X-ray diffraction measurements, transmission electron microscopy and elemental analysis. The thermal decomposition temperature of the alkylated GOs increased with increasing alkyl chain length. Moreover, the alkylated GOs showed a much improved compatibility with P(3,4HB) in the melt compared to the unmodified GO, and microscopy showed an even distribution in the polymer matrix. The molecular weight of P(3,4HB) was found to decrease during the melt extrusion, and the chain degradation was found to increase after the addition of alkylated GO. However, this effect decreased with increasing alkyl chain length. Melt rheology measurements showed that percolating networks appeared at filler contents above ~2 wt%. These networks were detected as increases in shear storage modulus and decreased phase shifts towards more elastic materials over time and at low frequencies. During cooling of the melts, calorimetric measurements showed an increase in the crystallisation temperature and enthalpy with increasing filler contents up to ~2 wt%. However, at higher filler contents a decreased propensity for crystallisation was noted, which again indicated network formation. Tensile testing showed that the nanocomposites containing the GO with hexadecyl chains displayed the highest elongation at break and yield stress. However, the numbers were lower compared to the unfilled P(3,4HB), most probably because of the lower molecular weight of the P(3,4HB) in the nanocomposites. The results of the present study demonstrated that alkylation of GO greatly improves the compatibility with the polymer, and that the processability and thermo-mechanical properties of the nanocomposites are systematically influenced by the GO content and the alkyl chain length.
  •  
20.
  •  
21.
  • Larsson, Matilda, et al. (författare)
  • Melt processability and thermomechanical properties of blends based on polyhydroxyalkanoates and poly(butylene adipate-co-terephthalate)
  • 2016
  • Ingår i: RSC Advances. - 2046-2069. ; 6:50, s. 44354-44363
  • Tidskriftsartikel (refereegranskat)abstract
    • The limited thermal stability of polyhydroxyalkanoates (PHAs) hinders their wide applicability, and methods to improve the processability of these biopolyesters are needed for efficient processing, e.g. by melt extrusion. In the present study we have shown by isothermal gravimetry, dynamic rheology and molecular weight analysis that the thermal stability of the PHAs at the processing temperature can be dramatically improved by simply washing the materials in a 1 mM aqueous HCl solution. Hence, the thermal decomposition temperature increased by up to 50 °C after the treatment. Subsequently, treated poly(3-hydroxybutyrate) and poly(3-hydroxybutyrate-co-4-hydroxybutyrate) were blended with different amounts of poly(butylene adipate-co-terephthalate) by melt extrusion in order to further enhance the processability and thermomechanical properties. Microscopy of freeze fractured samples of the biodegradable blends showed phase separated blends with poor interfacial adhesion. Melt rheology and dynamic mechanical analysis results indicated a phase inversion between 60 and 80 wt% of the respective PHA. After adding dicumyl peroxide during the extrusion, the interfacial adhesion improved significantly, and the dynamic shear and tensile storage modulii increased with increasing content of the peroxide. The results of the present study demonstrate that an acid wash may significantly improve processability of PHAs, and that combinations of blending and reactive extrusion can be employed to further enhance and tune the thermomechanical properties of the materials.
  •  
22.
  •  
23.
  •  
24.
  • Larsson, Matilda, et al. (författare)
  • Strain assessment in the carotid artery wall using ultrasound speckle tracking : validation in a sheep model.
  • 2015
  • Ingår i: Physics in Medicine and Biology. - : IOP Publishing. - 0031-9155 .- 1361-6560. ; 60:3, s. 1107-
  • Tidskriftsartikel (refereegranskat)abstract
    • The aim of this study was to validate carotid artery strain assessment in-vivo using ultrasound speckle tracking. The left carotid artery of five sheep was exposed and sonomicrometry crystals were sutured onto the artery wall to obtain reference strain. Ultrasound imaging was performed at baseline and stress, followed by strain estimation using an in-house speckle tracking algorithm tuned for vascular applications. The correlation between estimated and reference strain was r = 0.95 (p < 0.001) and r = 0.87 (p < 0.01) for longitudinal and circumferential strain, respectively. Moreover, acceptable limits of agreement were found in Bland-Altman analysis (longitudinally: -0.15 to 0.42%, circumferentially: -0.54 to 0.50%), which demonstrates the feasibility of estimating carotid artery strain using ultrasound speckle tracking. However, further studies are needed to test the algorithm on human in-vivo data and to investigate its potential to detect subclinical cardiovascular disease and characterize atherosclerotic plaques.
  •  
25.
  • Lindström, Annika K., 1953-, et al. (författare)
  • Screening history of elderly women diagnosed with cervical cancer
  • 2018
  • Ingår i: International Journal of Gynecology & Obstetrics. - : Wiley-Blackwell Publishing Inc.. - 0020-7292 .- 1879-3479. ; 143:S3, s. 927-927
  • Tidskriftsartikel (refereegranskat)abstract
    • Objectives: Cervical cancer in elderly women is often discovered at advanced stages and the prognosis is poor. In Sweden, where the screening program ends at the age of 60 in most counties, approximately 30% of the women diagnosed with cervical cancer are older than 60. The aim of this study was to investigate the cytological screening history in women diagnosed with cervical cancer at the age of 61 years and older.Method: This is a retrospective study including women from the counties of Örebro, Dalarna, and Gävleborg, (Sweden,) diagnosed with cervical cancer at the age of 61 years and older between 2001 and 2016. Screening history was obtained from 1967.Results: Out of the 223 women, 142 (63.7%) had participated in the screening program at least once and 95 (42.6%) had participated in the screening five times or more. Of the 142 women with at least one screening sample, 76 (53.5%) had a benign screening history. Of all women 76 (34.1%) had benign screening history, 66 (29.6%) had had dysplasia and 19 (8.5%) high-grade dysplasia. It was more common with a benign screening history among women diagnosed with adenocarcinomas compared to squamous cell carcinomas (p=0.002).Conclusions: In elderly women diagnosed with cervical cancer, more than one third had not participated in the screening program, nearly one third had a benign screening history and one-third of the women had dysplasia in their screening history. Continuing screening past the age of 60 can decrease the incidence of cervical cancer.
  •  
26.
  • Maksuti, Elira, 1986- (författare)
  • Imaging and modeling the cardiovascular system
  • 2016
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Understanding cardiac pumping function is crucial to guiding diagnosis, predicting outcomes of interventions, and designing medical devices that interact with the cardiovascular system.  Computer simulations of hemodynamics can show how the complex cardiovascular system is influenced by changes in single or multiple parameters and can be used to test clinical hypotheses. In addition, methods for the quantification of important markers such as elevated arterial stiffness would help reduce the morbidity and mortality related to cardiovascular disease.The general aim of this thesis work was to improve understanding of cardiovascular physiology and develop new methods for assisting clinicians during diagnosis and follow-up of treatment in cardiovascular disease. Both computer simulations and medical imaging were used to reach this goal.In the first study, a cardiac model based on piston-like motions of the atrioventricular plane was developed. In the second study, the presence of the anatomical basis needed to generate hydraulic forces during diastole was assessed in heathy volunteers. In the third study, a previously validated lumped-parameter model was used to quantify the contribution of arterial and cardiac changes to blood pressure during aging. In the fourth study, in-house software that measures arterial stiffness by ultrasound shear wave elastography (SWE) was developed and validated against mechanical testing.The studies showed that longitudinal movements of the atrioventricular plane can well explain cardiac pumping and that the macroscopic geometry of the heart enables the generation of hydraulic forces that aid ventricular filling. Additionally, simulations showed that structural changes in both the heart and the arterial system contribute to the progression of blood pressure with age. Finally, the SWE technique was validated to accurately measure stiffness in arterial phantoms.
  •  
27.
  • Maksuti, Elira, et al. (författare)
  • Influence of wall thickness and diameter on arterial shear wave elastography : a phantom and finite element study.
  • 2017
  • Ingår i: Physics in Medicine and Biology. - : Institute of Physics (IOP). - 0031-9155 .- 1361-6560. ; 62:7, s. 2694-2718
  • Tidskriftsartikel (refereegranskat)abstract
    • Quantitative, non-invasive and local measurements of arterial mechanical properties could be highly beneficial for early diagnosis of cardiovascular disease and follow up of treatment. Arterial shear wave elastography (SWE) and wave velocity dispersion analysis have previously been applied to measure arterial stiffness. Arterial wall thickness (h) and inner diameter (D) vary with age and pathology and may influence the shear wave propagation. Nevertheless, the effect of arterial geometry in SWE has not yet been systematically investigated. In this study the influence of geometry on the estimated mechanical properties of plates (h  =  0.5-3 mm) and hollow cylinders (h  =  1, 2 and 3 mm, D  =  6 mm) was assessed by experiments in phantoms and by finite element method simulations. In addition, simulations in hollow cylinders with wall thickness difficult to achieve in phantoms were performed (h  =  0.5-1.3 mm, D  =  5-8 mm). The phase velocity curves obtained from experiments and simulations were compared in the frequency range 200-1000 Hz and showed good agreement (R (2)  =  0.80  ±  0.07 for plates and R (2)  =  0.82  ±  0.04 for hollow cylinders). Wall thickness had a larger effect than diameter on the dispersion curves, which did not have major effects above 400 Hz. An underestimation of 0.1-0.2 mm in wall thickness introduces an error 4-9 kPa in hollow cylinders with shear modulus of 21-26 kPa. Therefore, wall thickness should correctly be measured in arterial SWE applications for accurate mechanical properties estimation.
  •  
28.
  • Marlevi, David, et al. (författare)
  • Estimation of Cardiovascular Relative Pressure Using Virtual Work-Energy
  • 2019
  • Ingår i: Scientific Reports. - : Nature Publishing Group. - 2045-2322. ; 9:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Many cardiovascular diseases lead to local increases in relative pressure, reflecting the higher costs of driving blood flow. The utility of this biomarker for stratifying the severity of disease has thus driven the development of methods to measure these relative pressures. While intravascular catheterisation remains the most direct measure, its invasiveness limits clinical application in many instances. Non-invasive Doppler ultrasound estimates have partially addressed this gap; however only provide relative pressure estimates for a range of constricted cardiovascular conditions. Here we introduce a non-invasive method that enables arbitrary interrogation of relative pressures throughout an imaged vascular structure, leveraging modern phase contrast magnetic resonance imaging, the virtual work-energy equations, and a virtual field to provide robust and accurate estimates. The versatility and accuracy of the method is verified in a set of complex patient-specific cardiovascular models, where relative pressures into previously inaccessible flow regions are assessed. The method is further validated within a cohort of congenital heart disease patients, providing a novel tool for probing relative pressures in-vivo.
  •  
29.
  • Marlevi, David (författare)
  • Non-invasive imaging for improved cardiovascular diagnostics : Shear wave elastography, relative pressure estimation, and tomographic reconstruction
  • 2019
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Throughout the last century, medical imaging has come to revolutionise the way we diagnose disease, and is today an indispensable part of virtually any clinical practice. In cardiovascular care imaging is extensively utilised, and the development of novel techniques promises refined diagnostic abilities: ultrasound elastography allows for constitutive tissue assessment, 4D flow magnetic resonance imaging (MRI) enables full-field flow mapping, and micro-Computed Tomography (CT) permits high-resolution imaging at pre-clinical level. However, following the complex nature of cardiovascular disease, refined methods are still very much needed to accurately utilise these techniques and to effectively isolate disease developments.The aim of this thesis has been to develop such methods for refined cardiovascular image diagnostics. In total eight studies conducted over three separate focus areas have been included: four on vascular shear wave elastography (SWE), three on non-invasive cardiovascular relative pressure estimations, and one on tomographic reconstruction for pre-clinical imaging.In Study I-IV, the accuracy and feasibility of vascular SWE was evaluated, with particular focus on refined carotid plaque characterisation. With confined arterial or plaque tissue restricting acoustic wave propagation, analysis of group and phase velocity was performed with SWE output validated against reference mechanical testing and imaging. The results indicate that geometrical confinement has a significant impact on SWE accuracy, however that a combined group and phase velocity approach can be utilised to identify vulnerable carotid plaque lesions in-vivo.In Study V-VII, a non-invasive method for the interrogation of relative pressure from imaged cardiovascular flow was developed. Using the concept of virtual work-energy, the method was applied to accurately assess relative pressures throughout complex, turbulence-inducing, branching vasculatures. The method was also applied on a dilated cardiomyopathy cohort, indicating arterial hemodynamic changes in cardiac disease.Lastly, in Study VIII a method for multigrid image reconstruction of tomographic data was developed, utilising domain splitting and operator masking to accurately reconstruct high-resolution regions-of-interests at a fraction of the computational cost of conventional full-resolution methods.Together, the eight studies have incorporated a range of different imaging modalities, developed methods for both constitutive and hemodynamic cardiovascular assessment, and utilised refined pre-clinical imaging, all with the same purpose: to refine current state cardiovascular imaging and to improve our ability to non-invasively assess cardiovascular disease. With promising results reached, the studies lay the foundation for continued clinical investigations, advancing the presented methods and maturing their usage for an improved future cardiovascular care.
  •  
30.
  • Marlevi, David, et al. (författare)
  • Plaque characterization using shear wave elastography-evaluation of differentiability and accuracy using a combined ex vivo and in vitro setup
  • 2018
  • Ingår i: Physics in Medicine and Biology. - : IOP PUBLISHING LTD. - 0031-9155 .- 1361-6560. ; 63:23
  • Tidskriftsartikel (refereegranskat)abstract
    • Ultrasound elastography has shown potential for improved plaque risk stratification. However, no clear consensus exists on what output metric to use, or what imaging parameters would render optimal plaque differentiation. For this reason we developed a combined ex vivo and in vitro setup, in which the ability to differentiate phantom plaques of varying stiffness was evaluated as a function of plaque geometry, push location, imaging plane, and analysed wave speed metric. The results indicate that group velocity or phase velocity >= 1 kHz showed the highest ability to significantly differentiate plaques of different stiffness, successfully classifying a majority of the 24 analysed plaque geometries, respectively. The ability to differentiate plaques was also better in the longitudinal views than in the transverse view. Group velocity as well as phase velocities <1 kHz showed a systematic underestimation of plaque stiffness, stemming from the confined plaque geometries, however, despite this group velocity analysis showed lowest deviation in estimated plaque stiffness (0.1 m s(-1) compared to 0.2 m s(-1) for phase velocity analysis). SWE results were also invariant to SWE push location, albeit apparent differences in signal-to-noise ratio (SNR) and generated plaque particle velocity. With that, the study has reinforced the potential of SWE for successful plaque differentiation; however the results also highlight the importance of choosing optimal imaging settings and using an appropriate wave speed metric when attempting to differentiate different plaque groups.
  •  
31.
  • Nordenfur, Tim, et al. (författare)
  • Algorithm Comparison for Cardiac Image Fusion of Coronary Computed Tomography Angiography and 3D Echocardiography
  • 2015
  • Ingår i: 2015 IEEE INTERNATIONAL ULTRASONICS SYMPOSIUM (IUS). - : IEEE. - 9781479981823
  • Konferensbidrag (refereegranskat)abstract
    • Treatment decision for coronary artery disease (CAD) is based on both morphological and functional information. Image fusion of coronary computed tomography angiography (CCTA) and three-dimensional echocardiography (3DE) could combine morphology and function into a single image to facilitate diagnosis. Three semi-automatic feature-based algorithms for CCTA/3DE registration were implemented and applied on CAD patients. Algorithms were verified and compared using landmarks manually identified by a cardiologist. All algorithms were found feasible for CCTA/3DE fusion.
  •  
32.
  • Nordenfur, Tim, et al. (författare)
  • Method comparison for cardiac image registration of coronary computed tomography angiography and 3-D echocardiography
  • 2018
  • Ingår i: Journal of Medical Imaging. - : SPIE - International Society for Optical Engineering. - 2329-4302 .- 2329-4310. ; 5:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Treatment decision for coronary artery disease (CAD) is based on both morphological and functional information. Image fusion of coronary computed tomography angiography (CCTA) and three-dimensional echocardiography (3DE) could combine morphology and function into a single image to facilitate diagnosis. Three semiautomatic feature-based methods for CCTA/3DE registration were implemented and applied on CAD patients. Methods were verified and compared using landmarks manually identified by a cardiologist. All methods were found feasible for CCTA/3DE fusion.
  •  
33.
  •  
34.
  • Petrini, Johan, et al. (författare)
  • Circumferential strain by velocity vector imaging and speckle-tracking echocardiography : validation against sonomicrometry in an aortic phantom
  • 2018
  • Ingår i: Clinical Physiology and Functional Imaging. - : John Wiley & Sons. - 1475-0961 .- 1475-097X. ; 38:2, s. 269-277
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Evaluation of arterial deformation and mechanics using strain analysis on ultrasound greyscale images has gained increasing scientific interest. The aim of this study was to validate in vitro measurements of circumferential strain by velocity vector imaging (VVI) and speckle-tracking echocardiography (STE) against sonomicrometry as a reference method. Method: Two polyvinyl alcohol phantoms sized to mimic the descending aorta were constructed and connected to a pulsatile flow pump to obtain high-resistance flow profiles. The ultrasound images of the phantom used for strain analyses were acquired with a transesophageal probe. Global and regional circumferential strains were estimated using VVI and STE and were compared with the strain acquired by sonomicrometry. Results: Global circumferential peak strain estimated by VVI and STE correlated well to sonomicrometry (r = 0·90, P≤0·001; and r = 0·97, P≤0·01) with a systematic bias of −0·78% and +0·63%, respectively. The reference strain levels were 1·07–2·54%. Circumferential strain values obtained by VVI were significantly lower than those obtained by STE (bias −1·41%, P≤0·001). Conclusion: Global circumferential strain measured by VVI and STE correlates well with sonomicrometry. However, strain values obtained by VVI and STE differ significantly, which should be taken into consideration when comparing results from studies using different software for aortic strain measurements.
  •  
35.
  • Smoljkić, M., et al. (författare)
  • Comparison of in vivo vs. ex situ obtained material properties of sheep common carotid artery
  • 2018
  • Ingår i: Medical Engineering and Physics. - : Elsevier. - 1350-4533 .- 1873-4030. ; 55, s. 16-24
  • Tidskriftsartikel (refereegranskat)abstract
    • Patient-specific biomechanical modelling can improve preoperative surgical planning. This requires patient-specific geometry as well as patient-specific material properties as input. The latter are, however, still quite challenging to estimate in vivo. This study focuses on the estimation of the mechanical properties of the arterial wall. Firstly, in vivo pressure, diameter and thickness of the arterial wall were acquired for sheep common carotid arteries. Next, the animals were sacrificed and the tissue was stored for mechanical testing. Planar biaxial tests were performed to obtain experimental stress-stretch curves. Finally, parameters for the hyperelastic Mooney–Rivlin and Gasser–Ogden–Holzapfel (GOH) material model were estimated based on the in vivo obtained pressure-diameter data as well as on the ex situ experimental stress-stretch curves. Both material models were able to capture the in vivo behaviour of the tissue. However, in the ex situ case only the GOH model provided satisfactory results. When comparing different fitting approaches, in vivo vs. ex situ, each of them showed its own advantages and disadvantages. The in vivo approach estimates the properties of the tissue in its physiological state while the ex situ approach allows to apply different loadings to properly capture the anisotropy of the tissue. Both of them could be further enhanced by improving the estimation of the stress-free state, i.e. by adding residual circumferential stresses in vivo and by accounting for the flattening effect of the tested samples ex vivo.
  •  
36.
  • Widman, Erik, et al. (författare)
  • Evaluating Arterial and Plaque Elasticity with Shear Wave Elastography in an ex vivo Porcine Model
  • 2015
  • Ingår i: 2015 IEEE INTERNATIONAL ULTRASONICS SYMPOSIUM (IUS). - : IEEE. - 9781479981823
  • Konferensbidrag (refereegranskat)abstract
    • Our objective was to use shear wave elastography (SWE) to characterize the mechanical properties of an arterial wall with a simulated calcified plaque in an ex vivo setup. A small porcine aorta was used as a model for a human carotid artery and attached to a fixture while pressurized with a water column. The stiffness of the arterial wall and a simulated plaque were estimated using SWE. The mean arterial wall and plaque shear modulus varied from 42 +/- 0 kPa to 100 +/- 1 kPa and 81 +/- 2 kPa to 174 +/- 2 kPa respectively over a pressure range of 20-120 mmHg. The results show the ability of SWE to characterize the mechanical properties of an arterial wall with a simulated plaque and take steps toward an in vivo implementation for quantitative plaque assessment.
  •  
37.
  • Widman, Erik, 1981-, et al. (författare)
  • Shear Wave Elastography Quantifies Stiffness in Ex Vivo Porcine Artery with Stiffened Arterial Region
  • 2016
  • Ingår i: Ultrasound in Medicine and Biology. - : Elsevier. - 0301-5629 .- 1879-291X. ; 42:10, s. 2423-2435
  • Tidskriftsartikel (refereegranskat)abstract
    • Five small porcine aortas were used as a human carotid artery model, and their stiffness was estimatedusing shear wave elastography (SWE) in the arterial wall and a stiffened artery region mimicking a stiff plaque. Tooptimize the SWE settings, shear wave bandwidth was measured with respect to acoustic radiation force pushlength and number of compounded angles used for motion detection with plane wave imaging. The mean arterialwall and simulated plaque shear moduli varied from 41 ± 5 to 97 ± 10 kPa and from 86 ± 13 to 174 ± 35 kPa, respectively,over the pressure range 20–120 mmHg. The results revealed that a minimum bandwidth of approximately1500 Hz is necessary for consistent shear modulus estimates, and a high pulse repetition frequency using no imagecompounding is more important than a lower pulse repetition frequency with better image quality when estimatingarterial wall and plaque stiffness using SWE.
  •  
38.
  • Widman, Erik, 1981- (författare)
  • Ultrasonic Methods for Quantitative Carotid Plaque Characterization
  • 2016
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Cardiovascular diseases are the leading causes of death worldwide and improved diagnostic methods are needed for early intervention and to select the most suitable treatment for patients. Currently, carotid artery plaque vulnerability is typically determined by visually assessing ultrasound B-mode images, which is influenced by user-subjectivity. Since plaque vulnerability is correlated to the mechanical properties of the plaque, quantitative techniques are needed to estimate plaque stiffness as a surrogate for plaque vulnerability, which would reduce subjectivity during plaque assessment. The work in this thesis focused on three noninvasive ultrasound-based techniques to quantitatively assess plaque vulnerability and measure arterial stiffness. In Study I, a speckle tracking algorithm was validated in vitro to assess strain in common carotid artery (CCA) phantom plaques and thereafter applied in vivo to carotid atherosclerotic plaques where the strain results were compared to visual assessments by experienced physicians. In Study II, hard and soft CCA phantom plaques were characterized with shear wave elastography (SWE) by using phase and group velocity analysis while being hydrostatically pressurized followed by validating the results with mechanical tensile testing. In Study III, feasibility of assessing the stiffness of simulated plaques and the arterial wall with SWE was demonstrated in an ex vivo setup in small porcine aortas used as a human CCA model. In Study IV, SWE and pulse wave imaging (PWI) were compared when characterizing homogeneous CCA soft phantom plaques. The techniques developed in this thesis have demonstrated potential to characterize carotid artery plaques. The results show that the techniques have the ability to noninvasively evaluate the mechanical properties of carotid artery plaques, provide additional data when visually assessing B-mode images, and potentially provide improved diagnoses for patients suffering from cerebrovascular diseases.
  •  
39.
  • Widman, Erik, et al. (författare)
  • Ultrasound speckle tracking strain estimation of in vivo carotid artery plaque with in vitro sonomicrometry validation
  • 2015
  • Ingår i: Ultrasound in Medicine and Biology. - : Elsevier. - 0301-5629 .- 1879-291X. ; 41:1, s. 77-88
  • Tidskriftsartikel (refereegranskat)abstract
    • Our objective was to validate a previously developed speckle tracking (ST) algorithm to assess strain in common carotid artery plaques. Radial and longitudinal strain was measured in common carotid artery gel phantoms with a plaque-mimicking inclusion using an in-house ST algorithm and sonomicrometry. Moreover, plaque strain by ST for seven patients (77 ± 6 y) with carotid atherosclerosis was compared with a quantitative visual assessment by two experienced physicians. In vitro, good correlation existed between ST and sonomicrometry peak strains, both radially (r = 0.96, p < 0.001) and longitudinally (r = 0.75, p < 0.01). In vivo, greater pulse pressure-adjusted radial and longitudinal strains were found in echolucent plaques than in echogenic plaques. This illustrates the feasibility of ultrasound ST strain estimation in plaques and the possibility of characterizing plaques using ST strain in vivo.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-39 av 39
Typ av publikation
tidskriftsartikel (18)
konferensbidrag (14)
doktorsavhandling (3)
bokkapitel (2)
licentiatavhandling (1)
recension (1)
visa fler...
visa färre...
Typ av innehåll
refereegranskat (34)
övrigt vetenskapligt/konstnärligt (5)
Författare/redaktör
Larsson, Matilda (18)
Larsson, Matilda, 19 ... (11)
Larsson, David (10)
Maksuti, Elira (8)
Colarieti-Tosti, Mas ... (6)
Winter, Reidar (5)
visa fler...
Ulen, Johannes (4)
Larsson, Viktor (4)
Alvén, Jennifer, 198 ... (4)
Landgren, Matilda (4)
Hoffman, Johan (3)
Jannasch, Patric (3)
Caidahl, Kenneth (3)
Kahl, Fredrik, 1972 (3)
Dhooge, Jan (3)
Bjällmark, Anna (3)
Enqvist, Olof, 1981 (2)
Caidahl, K (2)
Samset, Eigil (2)
Nordenfur, Tim, 1990 ... (2)
Arndt, Anton (2)
Heyde, Brecht (2)
Winter, R. (2)
Bulatović, Ivana (2)
Eckerberg, Katarina, ... (1)
Kahl, Fredrik (1)
Babic, A. (1)
Hetherington, Crispi ... (1)
Roy, J. (1)
Janerot-Sjöberg, Bir ... (1)
Enqvist, Olof (1)
Wallenberg, Reine (1)
Karlsson, Anna (1)
Gasser, T. Christian (1)
Svensson, Bo (1)
Björn, Annika (1)
Ejlertsson, Jörgen (1)
Razavi, R (1)
Peolsson, Michael (1)
Movin, Tomas (1)
Eriksson, Maria J. (1)
Ugander, Martin (1)
Hoffman, Johan, 1974 ... (1)
Bassan, Gioia (1)
Larsson, Magnus, 198 ... (1)
Larsson, Madeleine (1)
Truong, Xu-Bin (1)
Broomé, Michael (1)
Ripsweden, J (1)
Bulatovic, I (1)
visa färre...
Lärosäte
Kungliga Tekniska Högskolan (27)
Karolinska Institutet (16)
Lunds universitet (6)
Chalmers tekniska högskola (4)
Jönköping University (3)
Linköpings universitet (2)
visa fler...
Gymnastik- och idrottshögskolan (2)
Umeå universitet (1)
Örebro universitet (1)
RISE (1)
visa färre...
Språk
Engelska (39)
Forskningsämne (UKÄ/SCB)
Teknik (27)
Naturvetenskap (8)
Medicin och hälsovetenskap (6)
Samhällsvetenskap (2)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy