SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Leblanc François) srt2:(2022)"

Sökning: WFRF:(Leblanc François) > (2022)

  • Resultat 1-2 av 2
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Orsini, S., et al. (författare)
  • Inner southern magnetosphere observation of Mercury via SERENA ion sensors in BepiColombo mission
  • 2022
  • Ingår i: Nature Communications. - : Nature Publishing Group. - 2041-1723. ; 13:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Mercury’s southern inner magnetosphere is an unexplored region as it was not observed by earlier space missions. In October 2021, BepiColombo mission has passed through this region during its first Mercury flyby. Here, we describe the observations of SERENA ion sensors nearby and inside Mercury’s magnetosphere. An intermittent high-energy signal, possibly due to an interplanetary magnetic flux rope, has been observed downstream Mercury, together with low energy solar wind. Low energy ions, possibly due to satellite outgassing, were detected outside the magnetosphere. The dayside magnetopause and bow-shock crossing were much closer to the planet than expected, signature of a highly eroded magnetosphere. Different ion populations have been observed inside the magnetosphere, like low latitude boundary layer at magnetopause inbound and partial ring current at dawn close to the planet. These observations are important for understanding the weak magnetosphere behavior so close to the Sun, revealing details never reached before.
  •  
2.
  • Sánchez-Cano, Beatriz, et al. (författare)
  • Mars’ plasma system. Scientific potential of coordinated multipoint missions : "The next generation"
  • 2022
  • Ingår i: Experimental astronomy. - : Springer. - 0922-6435 .- 1572-9508. ; 54, s. 641-676
  • Tidskriftsartikel (refereegranskat)abstract
    • The objective of this White Paper, submitted to ESA’s Voyage 2050 call, is to get a more holistic knowledge of the dynamics of the Martian plasma system, from its surface up to the undisturbed solar wind outside of the induced magnetosphere. This can only be achieved with coordinated multi-point observations with high temporal resolution as they have the scientific potential to track the whole dynamics of the system (from small to large scales), and they constitute the next generation of the exploration of Mars analogous to what happened at Earth a few decades ago. This White Paper discusses the key science questions that are still open at Mars and how they could be addressed with coordinated multipoint missions. The main science questions are: (i) How does solar wind driving impact the dynamics of the magnetosphere and ionosphere? (ii) What is the structure and nature of the tail of Mars’ magnetosphere at all scales? (iii) How does the lower atmosphere couple to the upper atmosphere? (iv) Why should we have a permanent in-situ Space Weather monitor at Mars? Each science question is devoted to a specific plasma region, and includes several specific scientific objectives to study in the coming decades. In addition, two mission concepts are also proposed based on coordinated multi-point science from a constellation of orbiting and ground-based platforms, which focus on understanding and solving the current science gaps.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-2 av 2

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy