SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Leidel Nils) srt2:(2012)"

Sökning: WFRF:(Leidel Nils) > (2012)

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Leidel, Nils, et al. (författare)
  • Electronic Structure of an [FeFe] Hydrogenase Model Complex in Solution Revealed by X-ray Absorption Spectroscopy Using Narrow-Band Emission Detection
  • 2012
  • Ingår i: Journal of the American Chemical Society. - : American Chemical Society (ACS). - 0002-7863 .- 1520-5126. ; 134:34, s. 14142-14157
  • Tidskriftsartikel (refereegranskat)abstract
    • High-resolution X-ray absorption spectroscopy with narrow-band X-ray emission detection, supported by density functional theory calculations (XAES-DFT), was used to study a model complex, ([Fe-2(mu-adt)(CO)(4)(PMe3)(2)] (1, adt = S-CH2-(NCH2Ph)-CH2-S), of the [FeFe] hydrogenase active site. For 1 in powder material (1(powder)), in MeCN solution (1'), and in its three protonated states (1H, 1Hy, 1HHy; H denotes protonation at the adt-N and Hy protonation of the Fe-Fe bond to form a bridging metal hydride), relations between the molecular structures and the electronic configurations were determined. EXAFS analysis and DFT geometry optimization suggested prevailing rotational isomers in MeCN, which were similar to the crystal structure or exhibited rotation of the (CO) ligands at Fe1 (1(CO), 1Hy(CO)) and in addition of the phenyl ring (1H(CO,ph), 1HHy(CO,ph)), leading to an elongated solvent-exposed Fe-Fe bond. Isomer formation, adt-N protonation, and hydride binding caused spectral changes of core-to-valence (pre-edge of the Fe K-shell absorption) and of valence-to-core (K beta(2,5) emission) electronic transitions, and of K alpha RIXS data, which were quantitatively reproduced by DFT. The study reveals (1) the composition of molecular orbitals, for example, with dominant Fe-d character, showing variations in symmetry and apparent oxidation state at the two Fe ions and a drop in MO energies by similar to 1 eV upon each protonation step, (2) the HOMO-LUMO energy gaps, of similar to 2.3 eV for 1(powder) and similar to 2.0 eV for 1', and (3) the splitting between iron d(z(2)) and d(x(2-)y(2)) levels of similar to 0.5 eV for the nonhydride and similar to 0.9 eV for the hydride states. Good correlations of reduction potentials to LUMO energies and oxidation potentials to HOMO energies were obtained. Two routes of facilitated bridging hydride binding thereby are suggested, involving ligand rotation at Fe1 for 1Hy(CO) or adt-N protonation for 1HHy(CO,ph). XAES-DFT thus enables verification of the effects of ligand substitutions in solution for guided improvement of [FeFe] catalysts.
  •  
2.
  • Leidel, Nils, et al. (författare)
  • High-valent [MnFe] and [FeFe] cofactors in ribonucleotide reductases
  • 2012
  • Ingår i: Biochimica et Biophysica Acta - Bioenergetics. - : Elsevier BV. - 0005-2728 .- 1879-2650. ; 1817:3, s. 430-444
  • Tidskriftsartikel (refereegranskat)abstract
    • Ribonucleotide reductases (RNRs) are essential for DNA synthesis in most organisms. In class-Ic RNR from Chlamydia trachomatis (Ct), a MnFe cofactor in subunit R2 forms the site required for enzyme activity, instead of an FeFe cofactor plus a redox-active tyrosine in class-la RNRs, for example in mouse (Mus musculus, Mm). For R2 proteins from Ct and Mm, either grown in the presence of, or reconstituted with Mn and Fe ions, structural and electronic properties of higher valence MnFe and FeFe sites were determined by X-ray absorption spectroscopy and complementary techniques, in combination with bond-valence-sum and density functional theory calculations. At least ten different cofactor species could be tentatively distinguished. In Cr R2, two different Mn(IV)Fe(III) site configurations were assigned either L4MnIV(mu O)(2)(FeL4)-L-III (metal-metal distance of similar to 2.75 angstrom, L = ligand) prevailing in metal-grown R2, or L4MnIV(mu O)(mu OH)(FeL4)-L-III (similar to 2.90 angstrom) dominating in metal-reconstituted R2. Specific spectroscopic features were attributed to an Fe(IV)Fe(III) site (similar to 2.55 angstrom) with a L4FeIV(mu O)(2)(FeL3)-L-III core structure. Several Mn,Fe(III)Fe(III) (similar to 2.9-3.1 angstrom) and Mn,Fe(III)Fe(II) species (similar to 3.3-3.4 angstrom) likely showed 5-coordinated Mn(III) or Fe(III). Rapid X-ray photoreduction of iron and shorter metal-metal distances in the high-valent states suggested radiation-induced modifications in most crystal structures of R2. The actual configuration of the MnFe and FeFe cofactors seems to depend on assembly sequences, bound metal type, valence state, and previous catalytic activity involving subunit RI. In Ct R2, the protonation of a bridging oxide in the Mn-IV(mu O)(mu OH)Fe-III core may be important for preventing premature site reduction and initiation of the radical chemistry in R1.
  •  
3.
  • Leidel, Nils, et al. (författare)
  • Site-Selective X-ray Spectroscopy on an Asymmetric Model Complex of the [FeFe] Hydrogenase Active Site
  • 2012
  • Ingår i: Inorganic Chemistry. - : American Chemical Society (ACS). - 0020-1669 .- 1520-510X. ; 51:8, s. 4546-4559
  • Tidskriftsartikel (refereegranskat)abstract
    • The active site for hydrogen production in [FeFe] hydrogenase comprises a diiron unit. Bioinorganic chemistry has modeled important features of this center, aiming at mechanistic understanding and the development of novel catalysts. However, new assays are required for analyzing the effects of ligand variations at the metal ions. By high-resolution X-ray absorption spectroscopy with narrow-band X-ray emission detection (XAS/XES = XAES) and density functional theory (DFT), we studied an asymmetrically coordinated [FeFe] model complex, [(CO)(3)Fe(I)1-(bdtCl(2))-Fe-2(I)(CO)(Ph2P-CH2-NCH3-CH2-PPh2)] (1, bdt = benzene-1,2-dithiolate), in comparison to iron-carbonyl references. K beta emission spectra (K beta(1,3), K beta') revealed the absence of unpaired spins and the low-spin character for both Fe ions in 1. In a series of low-spin iron compounds, the K beta(1,3) energy did not reflect the formal iron oxidation state, but it decreases with increasing ligand field strength due to shorter iron-ligand bonds, following the spectrochemical series. The intensity of the valence-to-core transitions (K beta(2,5)) decreases for increasing Fe-ligand bond length, certain emission peaks allow counting of Fe-CO bonds, and even molecular orbitals (MOs) located on the metal-bridging bdt group of 1 contribute to the spectra. As deduced from 3d -> 1s emission and 1s -> 3d absorption spectra and supported by DFT, the HOMO-LUMO gap of 1 is about 2.8 eV. K beta-detected XANES spectra in agreement with DFT revealed considerable electronic asymmetry in 1; the energies and occupancies of Fe-d dominated MOs resemble a square-pyramidal F(0) for Fe1 and an octahedral Fe(II) for Fe2. EXAFS spectra for various K beta emission energies showed considerable site-selectivity; approximate structural parameters similar to the crystal structure could be determined for the two individual iron atoms of 1 in powder samples. These results suggest that metal site- and spin-selective XAES on [FeFe] hydrogenase protein and active site models may provide a powerful tool to study intermediates under reaction conditions.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy