SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Lenton D) srt2:(2020-2023)"

Sökning: WFRF:(Lenton D) > (2020-2023)

  • Resultat 1-6 av 6
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Kanai, M, et al. (författare)
  • 2023
  • swepub:Mat__t
  •  
2.
  •  
3.
  • Gupta, J., et al. (författare)
  • Reconciling safe planetary targets and planetary justice : Why should social scientists engage with planetary targets?
  • 2021
  • Ingår i: Earth System Governance. - : Elsevier BV. - 2589-8116. ; 10
  • Tidskriftsartikel (refereegranskat)abstract
    • As human activity threatens to make the planet unsafe for humanity and other life forms, scholars are identifying planetary targets set at a safe distance from biophysical thresholds beyond which critical Earth systems may collapse. Yet despite the profound implications that both meeting and transgressing such targets may have for human wellbeing, including the potential for negative trade-offs, there is limited social science analysis that systematically considers the justice dimensions of such targets. Here we assess a range of views on planetary justice and present three arguments associated with why social scientists should engage with the scholarship on safe targets. We argue that complementing safe targets with just targets offers a fruitful approach for considering synergies and trade-offs between environmental and social aspirations and can inform inclusive deliberation on these important issues.
  •  
4.
  • Lenton, Samuel, et al. (författare)
  • From dilute to concentrated solutions of intrinsically disordered proteins: Sample preparation and data collection
  • 2022
  • Ingår i: Methods in Enzymology. - : Elsevier. - 0076-6879. ; 677, s. 457-478
  • Bokkapitel (refereegranskat)abstract
    • It is well-known that an increasing proportion of proteins, protein regions, and partners of globular proteins are being recognized as having an intrinsic disorder, and therefore, not adopting a single three-dimensional structure in solution. For these proteins, small-angle X-ray scattering (SAXS) has become a premier method for examination, since it can provide information about the ensemble of the structural conformations as well as the intermolecular interactions. SAXS measurements can be performed from low to high protein concentrations under different physicochemical properties of the solution. The focus of this chapter is to introduce the basics of how to use SAXS for protein samples, for new and less experienced users, in a simple and concise manner, with emphasis on highly flexible proteins and regions. Methodological aspects in the sample preparation, experiment design, and data collection stages are raised that should be considered prior to attempting SAXS experiments. This is to ensure that high-quality SAXS data is obtained that enables accurate analysis. However, many of the points raised will also be worth considering for SAXS experiments of globular proteins.
  •  
5.
  • Lenton, Samuel, et al. (författare)
  • Impact of arginine−phosphate interactions on the reentrant condensation of disordered proteins
  • 2021
  • Ingår i: Biomacromolecules. - : American Chemical Society (ACS). - 1525-7797 .- 1526-4602. ; 22:4, s. 1532-1544
  • Tidskriftsartikel (refereegranskat)abstract
    • Re-entrant condensation results in the formation of a condensed protein regime between two critical ion concentrations. The process is driven by neutralization and inversion of the protein charge by oppositely charged ions. Re-entrant condensation of cationic proteins by the polyvalent anions, pyrophosphate and tripolyphosphate, has previously been observed, but not for citrate, which has similar charge and size compared to the polyphosphates. Therefore, besides electrostatic interactions, other specific interactions between the polyphosphate ions and proteins must contribute. Here, we show that additional., attractive interactions between arginine and tripolyphosphate determine the re-entrant condensation and decondensation boundaries of the cationic, intrinsically disordered saliva protein, histatin 5. Furthermore, we show by small-angle X-ray scattering (SAXS) that polyvalent anions cause compaction of histatin 5, as would be expected based solely on electrostatic interactions. Hence, we conclude that arginine−phosphate-specific interactions not only regulate solution properties but also influence the conformational ensemble of histatin 5, which is shown to vary with the number of arginine residues. Together, the results presented here provide further insight into an organizational mechanism that can be used to tune protein interactions in solution of both naturally occurring and synthetic proteins.
  •  
6.
  • Sproson, Adam D., et al. (författare)
  • Osmium and lithium isotope evidence for weathering feedbacks linked to orbitally paced organic carbon burial and Silurian glaciations
  • 2022
  • Ingår i: Earth and Planetary Science Letters. - : Elsevier BV. - 0012-821X. ; 577
  • Tidskriftsartikel (refereegranskat)abstract
    • The Ordovician (∼487 to 443 Ma) ended with the formation of extensive Southern Hemisphere ice sheets, known as the Hirnantian glaciation, and the second largest mass extinction in Earth History. It was followed by the Silurian (∼443 to 419 Ma), one of the most climatically unstable periods of the Phanerozoic as evidenced by several large scale (>5‰) carbon isotope (δ13C) perturbations associated with further extinction events. Despite several decades of research, the cause of these environmental instabilities remains enigmatic. Here, we provide osmium (187Os/188Os) and lithium (δ7Li) isotope measurements of marine sedimentary rocks that cover four Silurian δ13C excursions. Osmium and Li isotope records resemble those previously recorded for the Hirnantian glaciation suggesting a similar causal mechanism. When combined with a new dynamic carbon-osmium-lithium biogeochemical model we suggest that astronomical forcing of the marine organic carbon cycle, as opposed to a decline in volcanic arc degassing or the rise of early land plants, resulted in drawdown of atmospheric CO2, triggering continental scale glaciation, intense global cooling and eustatic sea-level lows recognised in the geological record. Lower atmospheric pCO2 and temperatures during the Hirnantian and Silurian glaciations suppressed CO2 removal by silicate weathering, driving 187Os/188Os and δ7Li variability, supporting the existence of climate-regulating feedbacks.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-6 av 6

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy