SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Li Daqing) srt2:(2020-2023)"

Sökning: WFRF:(Li Daqing) > (2020-2023)

  • Resultat 1-5 av 5
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Duan, Dongban, et al. (författare)
  • Gadolinium Neutron Capture Reaction-Induced Nucleodynamic Therapy Potentiates Antitumor Immunity
  • 2023
  • Ingår i: CCS Chemistry. - : Chinese Chemical Society. - 2096-5745. ; 5:11, s. 2589-2602
  • Tidskriftsartikel (refereegranskat)abstract
    • A nuclear reaction-induced dynamic therapy, denoted as nucleodynamic therapy (NDT), has been invented that triggers immunogenic cell death and successfully treats metastatic tumors due to its unexpected abscopal effect. Gadolinium neutron capture therapy (GdNCT) is binary radiotherapy based on a localized nuclear reaction that produces high-energy radiations (e.g., Auger electrons, γ-rays, etc.) in cancer cells when 157Gd is irradiated with thermal neutrons. Yet, its clinical application has been postponed due to the poor ability of Auger electrons and γ-rays to kill cells. Here, we engineered a 157Gd-porphyrin framework that synergizes GdNCT and dynamic therapy to efficiently produce both •OH and immunogenic 1O2 in cancer cells, thereby provoking a strong antitumor immune response. This study unveils the fact and mechanism that NDT heats tumor immunity. Another unexpected finding is that the Auger electron can be the most effective energy-transfer medium for radiation-induced activation of nanomedicines because its nanoscale trajectory perfectly matches the size of nanomaterials. In mouse tumor models, NDT causes nearly complete regression of both primary and distant tumor grafts. Thus, this 157Gd-porphyrin framework radioenhancer endows GdNCT with the exotic function of triggering dynamic therapy; its application may expand in clinics as a new radiotherapy modality that utilizes GdNCT to provoke whole-body antitumor immune response for treating metastases, which are responsible for 90% of all cancer deaths. 
  •  
2.
  • Bao, Minglei, et al. (författare)
  • Modeling and evaluating nodal resilience of multi-energy systems under windstorms
  • 2020
  • Ingår i: Applied Energy. - : Elsevier BV. - 0306-2619 .- 1872-9118. ; 270
  • Tidskriftsartikel (refereegranskat)abstract
    • With the growing frequency and extent of extreme weather events, the resilient operation of multi-energy systems (MESs) has drawn attention nowadays. However, there is little study on the methodology with a set of key indicators to quantify the resilience of MESs with the consideration of the impacts of extreme weather. To address the problem, this paper proposes a framework to evaluate the time-dependent resilience of MESs considering energy interactions during extreme weather events, such as windstorms. Firstly, the multi-phase performance curve is utilized to describe the response behavior of MESs at different phases under the impacts of windstorms. Secondly, a service-based optimal energy flow model is developed to minimize the consequences caused by windstorms through the coordination among different energy subsystems. In order to model the chaotic failures and restoration of components, the Monte-Carlo simulation technique is applied. Furthermore, nodal resilience metrics for different energy carriers are proposed to quantify the resilience in MESs. Numerical studies demonstrate the capability of the proposed technique to quantify the resilience of MESs under windstorms. The results show that the resilience performance level of MESs can differ in different regions with the impacts of windstorms. The findings can provide a useful reference for system operators to constitute targeted resilience improvement measures.
  •  
3.
  • Huang, Guokai, et al. (författare)
  • Effects of Corrosion Products Deposited on 304 Stainless Steel on Reduction of Se (IV/VI) in Simulated Groundwater
  • 2022
  • Ingår i: Materials. - : MDPI AG. - 1996-1944. ; 15:8
  • Tidskriftsartikel (refereegranskat)abstract
    • Selenium (Se) is a key mobile fission product in the geological disposal of nuclear waste. It is necessary to analyze the reductive deposition behavior of iron-based materials to Se(IV) and Se(VI) in groundwater. In the present work, the corrosion behavior of 304 stainless steel in simulated groundwater (SG) and the effects of corrosion products on the dissolution of Se were investigated by electrochemical and immersion tests. Experimental results revealed that passivation films formed on 304 stainless-steel samples were destroyed by polarization measurements, forming corrosion products consisting of Fe(II) compounds, such as Fe3O4 and FeO. Corrosion products deposited on the surface of steel samples previously treated by polarization measurements in SG + CaCl2/Na2CO3/Na2SiO3 solutions effectively reduced soluble Se(IV) and Se(VI) during immersion tests, depositing FeSe2 on sample surfaces.
  •  
4.
  • Li, Teng, et al. (författare)
  • Effects of Different Ions and Temperature on Corrosion Behavior of Pure Iron in Anoxic Simulated Groundwater
  • 2020
  • Ingår i: Materials. - : MDPI AG. - 1996-1944. ; 13:12
  • Tidskriftsartikel (refereegranskat)abstract
    • As a typical material of the insert in high-level radioactive waste (HLW) geological disposal canisters, iron-based materials will directly contact with groundwater after the failure of a metallic canister, acting as a chemical barrier to prevent HLW leaking into groundwater. In this paper, anoxic groundwater was simulated by mixing 10 mM NaCl and 2 mM NaHCO3 purged by Ar gas (containing 0.3% CO2) with different added ions (Ca2+, CO32− and SiO32−) and operation temperatures (25, 40 and 60 °C). An electrochemical measurement, immersion tests and surface characterization were carried out to study the corrosion behavior of pure iron in the simulated groundwater. The effects of Ca2+ on the corrosion behavior of iron is negligible, however, Cl− plays an important role in accelerating the corrosion activity with the increased concentration and temperature. With increased concentrations of CO32− and SiO32−, the corrosion resistance of iron is largely improved, which is attributed to the formation of a uniform passivation film. The independent effects of temperature on the corrosion behavior of iron are resulted from the repeated passivation–dissolution processes in the formation of the passivation film, resulting from the synergistic effects of CO32−/SiO32− and Cl−. The formation of ferric silicate is dominant in the passivation film with the addition of SiO32−, which effectively protects the iron surface from corrosion.
  •  
5.
  • Zhong, Yuan, et al. (författare)
  • Oxide dispersion strengthened stainless steel 316L with superior strength and ductility by selective laser melting
  • 2020
  • Ingår i: Journal of Materials Science & Technology. - : Elsevier BV. - 1005-0302. ; 42, s. 97-105
  • Tidskriftsartikel (refereegranskat)abstract
    • Dense oxide dispersion strengthened (ODS) 316 L steels with different amount of Y2O3 additions were successfully fabricated by selective laser melting (SLM) even though part of the added Y2O3 got lost during the process. The microstructure was characterized in details and the mechanical properties were tested at room temperature, 250 degrees C and 400 degrees C, respectively. The effect of the scanning speed on agglomeration of nanoparticles during SLM process was discussed. Superior properties, e.g., yield strength of 574 MPa and elongation of 91%, were achieved at room temperature in SLM ODS 316 L with additional 1% of Y2O3. At elevated temperatures, the strength kept high but the elongations dropped dramatically. It was observed that nano-voids nucleated throughout the whole gauge section at the sites where nanoinclusions located. The growth and coalescence of these voids were suppressed by the formation of an element segregation network before necking, which relieved local stress concentration and thus delayed necking. This unusual necking behavior was studied and compared to the previous theory. It appeared that the strong convection presented in the melt pool can evenly redistribute the short-time milled coarse Y2O3 precursor powder during SLM process. These findings can not only solve the problems encountered during the fabrication of ODS components but also replenish the strengthening mechanism of SLM 316 L thus pave a way for further improving of mechanical properties.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-5 av 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy