SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Li Qi 1990) srt2:(2022)"

Sökning: WFRF:(Li Qi 1990) > (2022)

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Li, Feiran, 1993, et al. (författare)
  • Improving recombinant protein production by yeast through genome-scale modeling using proteome constraints
  • 2022
  • Ingår i: Nature Communications. - : Springer Science and Business Media LLC. - 2041-1723 .- 2041-1723. ; 13:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Eukaryotic cells are used as cell factories to produce and secrete multitudes of recombinant pharmaceutical proteins, including several of the current top-selling drugs. Due to the essential role and complexity of the secretory pathway, improvement for recombinant protein production through metabolic engineering has traditionally been relatively ad-hoc; and a more systematic approach is required to generate novel design principles. Here, we present the proteome-constrained genome-scale protein secretory model of yeast Saccharomyces cerevisiae (pcSecYeast), which enables us to simulate and explain phenotypes caused by limited secretory capacity. We further apply the pcSecYeast model to predict overexpression targets for the production of several recombinant proteins. We experimentally validate many of the predicted targets for alpha-amylase production to demonstrate pcSecYeast application as a computational tool in guiding yeast engineering and improving recombinant protein production. Due to the complexity of the protein secretory pathway, strategy suitable for the production of a certain recombination protein cannot be generalized. Here, the authors construct a proteome-constrained genome-scale protein secretory model for yeast and show its application in the production of different misfolded or recombinant proteins.
  •  
2.
  • Wu, Jingnan, 1994, et al. (författare)
  • Modulating the nanoscale morphology on carboxylate-pyrazine containing terpolymer toward 17.8% efficiency organic solar cells with enhanced thermal stability
  • 2022
  • Ingår i: Chemical Engineering Journal. - : Elsevier BV. - 1385-8947. ; 446
  • Tidskriftsartikel (refereegranskat)abstract
    • It had been commonly accepted in the organic photovoltaic (OPV) community that subtle variations in the molecular structure of active layer materials would cause profound impacts on their aggregating structure and blend morphology and therefore the performance of such polymer solar cells (PSCs). Herein, we employed an electron-deficient building block 3,6-dithiophenyl-2-carboxylate pyrazine (DTCPz) for constructing one series of promising donor terpolymers of PMZ1, PMZ2, and PMZ3, respectively, gaining their relatively lower-lying highest occupied molecular orbital (HOMO) energy levels, more closed π-π stacking and enhanced crystallinity in thin films, and lower miscibility with acceptor Y6, in comparison with their parent polymer counterpart (namely PM6). Reaching DTCPz moieties up to 20% (mol/mol%) in its terpolymer composition, the resulting polymer (PMZ2) achieved more favorable phase separation with improved exciton dissociation, and charge transport and extraction. As a result, an outstanding fill factor of 77.2% and a promising power conversion efficiency of 17.8 % was achieved. Moreover, the corresponding device shows better thermal stability over the PM6-based one. This work suggests a facile method for significantly improving the thin film morphology of the active-layer materials via fine-tuning the chemical structure of electron-deficient units on the backbone of the wide bandgap donor polymer, therefore achieving enhanced photovoltaic performance and thermal stability for practical applications.
  •  
3.
  • Haque, Mohammad Mazharul, 1984, et al. (författare)
  • Exploiting low-grade waste heat to produce electricity through supercapacitor containing carbon electrodes and ionic liquid electrolytes
  • 2022
  • Ingår i: Electrochimica Acta. - : Elsevier BV. - 0013-4686. ; 403
  • Tidskriftsartikel (refereegranskat)abstract
    • Low-grade thermal energy harvesting presents great challenges to traditional thermoelectric systems based on the Seebeck effect, the thermogalvanic effect, and the Soret effect due to fixed temperature gradient and low voltage output. In this study, we report an ionic thermoelectric system, essentially a supercapacitor (SC) containing an ionic liquid (IL) electrolyte and activated carbon electrodes, which works on the thermocapacitive effect and does not require any fixed temperature gradient, rather it works in a homogeneously changing temperature. A systematic investigation is carried out on SCs containing two different ILs, 1-Ethyl-3-methylimidazolium bis (trifluoromethylsulfonyl), EMIm TFSI, and 1-Ethyl-3-methylimidazolium acetate, EMIm OAc. A high voltage output of 176 mV is achieved for EMIm TFSI containing SC by exposing just to 60 °C environment. Moreover, a large voltage of 502 mV is recovered from the SC upon subjecting to heat after one electrical charge/discharge cycle. A system containing two SCs in series demonstrates a significant voltage of 947 mV. The observed performance difference between the two ILs is rationalized in terms of the extent of asymmetry in the interfaces of the electrical double layer that essentially originates from different diffusivity of individual ions. The mechanism can be applied to a plethora of ILs to exploit low-grade heat to store electricity without a fixed temperature gradient, opening up the possibility to merge different scientific communities and enrich this rising research field.
  •  
4.
  • Vyas, Agin, 1992, et al. (författare)
  • Spin-Coated Heterogenous Stacked Electrodes for Performance Enhancement in CMOS-Compatible On-Chip Microsupercapacitors
  • 2022
  • Ingår i: ACS Applied Energy Materials. - : American Chemical Society (ACS). - 2574-0962. ; 5:4, s. 4221-4231
  • Tidskriftsartikel (refereegranskat)abstract
    • Integration of microsupercapacitors (MSCs) with on-chip sensors and actuators with nanoenergy harvesters can improve the lifetime of wireless sensor nodes in an Internet-of-Things (IoT) architecture. However, to be easy to integrate with such harvester technology, MSCs should be fabricated through a complementary-metal-oxide-semiconductor (CMOS) compatible technology, ubiquitous in electrode choice with the capability of heterogeneous stacking of electrodes for modulation in properties driven by application requirements. In this article, we address both these issues through fabrication of multielectrode modular, high energy density microsupercapacitors (MSC) containing reduced graphene oxide (GO), GO-heptadecane-9-amine (GO-HD9A), rGO-octadecylamine (rGO-ODA), and rGO-heptadecane-9-amine (rGO-HD9A) that stack through a scalable, CMOS compatible, high-wafer-yield spin-coating process. Furthermore, we compare the performance of the stack with individual electrode MSCs fabricated through the same process. The individual electrodes, in the presence of 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfony)imide (EMIM-TFSI), demonstrate a capacitance of 38, 30, 36, and 105 μF/cm^2 at 20 mV/s^1 whereas the fabricated stack of electrodes demonstrates a high capacitance of 280 μF/cm^2 at 20 mV/s^1 while retaining and enhancing the material-dependent capacitance, charge retention, and power density.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy