SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Lin Leteng 1980 ) srt2:(2015-2019)"

Sökning: WFRF:(Lin Leteng 1980 ) > (2015-2019)

  • Resultat 1-5 av 5
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Jiang, Junfei, et al. (författare)
  • Partial oxidation of filter cake particles from biomass gasification process in the simulated product gas environment
  • 2018
  • Ingår i: Energy & Fuels. - : American Chemical Society (ACS). - 0887-0624 .- 1520-5029. ; 32:2, s. 1703-1710
  • Tidskriftsartikel (refereegranskat)abstract
    • Filtration failure occurs when filter media is blocked by accumulated solid particles. Suitable operating conditions were investigated for cake cleaning by partial oxidation of filter-cake particles (FCP) during biomass gasification. The mechanism of the FCP partial oxidation was investigated in a ceramic filter and by using thermo-gravimetric analysis through a temperature-programmed route in a 2 vol.% O2–N2 environment. Partial oxidation of the FCP in the simulated product gas environment was examined at 300–600°C in a ceramic filter that was set and heated in a laboratory-scale fixed reactor. Four reaction stages, namely drying, pre-oxidation, complex oxidation and non-oxidation, occurred in the FCP partial oxidation when the temperature increased from 30°C to 800°C in a 2 vol.% O2–N2 environment. Partial oxidation was more effective for FCP mass loss from 275 to 725°C. Experimental results obtained in a ceramic filter indicated that the best operating temperature and FCP loading occurred at 400°C and 1.59 g/cm2, respectively. The FCP were characterized by Fourier-transform infrared spectroscopy, scanning electron microscopy and Brunaeur–Emmett–Teller before and after partial oxidation. Fourier-transform infrared spectroscopy analysis revealed that partial oxidation of the FCP can result in a significant decrease in C–Hn (alkyl and aromatic) groups and an increase in C=O (carboxylic acids) groups. The scanning electron microscopy and Brunaeur–Emmett–Teller analysis suggests that during partial oxidation, the FCP underwent pore or pit formation, expansion, amalgamation and destruction.
  •  
2.
  • Biollaz, S., et al. (författare)
  • Gas analysis in gasification of biomass and waste : Guideline report: Document 1
  • 2018
  • Rapport (refereegranskat)abstract
    • Gasification is generally acknowledged as one of the technologies that will enable the large-scale production of biofuels and chemicals from biomass and waste. One of the main technical challenges associated to the deployment of biomass gasification as a commercial technology is the cleaning and upgrading of the product gas. The contaminants of product gas from biomass/waste gasification include dust, tars, alkali metals, BTX, sulphur-, nitrogen- and chlorine compounds, and heavy metals. Proper measurement of the components and contaminants of the product gas is essential for the monitoring of gasification-based plants (efficiency, product quality, by-products), as well as for the proper design of the downstream gas cleaning train (for example, scrubbers, sorbents, etc.). In practice, a trade-off between reliability, accuracy and cost has to be reached when selecting the proper analysis technique for a specific application. The deployment and implementation of inexpensive yet accurate gas analysis techniques to monitor the fate of gas contaminants might play an important role in the commercialization of biomass and waste gasification processes.This special report commissioned by the IEA Bioenergy Task 33 group compiles a representative part of the extensive work developed in the last years by relevant actors in the field of gas analysis applied to(biomass and waste) gasification. The approach of this report has been based on the creation of a team of contributing partners who have supplied material to the report. This networking approach has been complemented with a literature review. The report is composed of a set of 2 documents. Document 1(the present report) describes the available analysis techniques (both commercial and underdevelopment) for the measurement of different compounds of interest present in gasification gas. The objective is to help the reader to properly select the analysis technique most suitable to the target compounds and the intended application. Document 1 also describes some examples of application of gas analysis at commercial-, pilot- and research gasification plants, as well as examples of recent and current joint research activities in the field. The information contained in Document 1 is complemented with a book of factsheets on gas analysis techniques in Document 2, and a collection of video blogs which illustrate some of the analysis techniques described in Documents 1 and 2.This guideline report would like to become a platform for the reinforcement of the network of partners working on the development and application of gas analysis, thus fostering collaboration and exchange of knowledge. As such, this report should become a living document which incorporates in future coming progress and developments in the field.
  •  
3.
  • Biollaz, S., et al. (författare)
  • Gas analysis in gasification of biomass and waste : Guideline report: Document 2 - Factsheets on gas analysis techniques
  • 2018
  • Rapport (refereegranskat)abstract
    • Gasification is generally acknowledged as one of the technologies that will enable the large-scale production of biofuels and chemicals from biomass and waste. One of the main technical challenges associated to the deployment of biomass gasification as a commercial technology is the cleaning and upgrading of the product gas. The contaminants of product gas from biomass/waste gasification include dust, tars, alkali metals, BTX, sulphur-, nitrogen- and chlorine compounds, and heavy metals. Proper measurement of the components and contaminants of the product gas is essential for the monitoring of gasification-based plants (efficiency, product quality, by-products), as well as for the proper design of the downstream gas cleaning train (for example, scrubbers, sorbents, etc.). The deployment and implementation of inexpensive yet accurate gas analysis techniques to monitor the fate of gas contaminants might play an important role in the commercialization of biomass and waste gasification processes.This special report commissioned by the IEA Bioenergy Task 33 group compiles a representative part of the extensive work developed in the last years by relevant actors in the field of gas analysis applied to (biomass and waste) gasification. The approach of this report has been based on the creation of a team of contributing partners who have supplied material to the report. This networking approach has been complemented with a literature review. This guideline report would like to become a platform for the reinforcement of the network of partners working on the development and application of gas analysis, thus fostering collaboration and exchange of knowledge. As such, this report should become a living document which incorporates in future coming progress and developments in the field.
  •  
4.
  • Morgalla, Mario, 1987-, et al. (författare)
  • Benzene Conversion in a Packed Alumina Bed Continuously Fed with Woody Char Particles
  • 2018
  • Ingår i: Energy & Fuels. - : American Chemical Society (ACS). - 0887-0624 .- 1520-5029. ; 32:7, s. 7670-7677
  • Tidskriftsartikel (refereegranskat)abstract
    • This Article investigates the decomposition of benzene (as a model tar) over finely dispersed char particles continuously distributed into a packed bed. Fragmented char particles and benzene plus a gasification agent (H2O or CO2) were supplied into a ceramic reactor that was heated electrically. The supplied char particles were retained in the reactor by a bed of alumina grains. Woody char as well as iron-doped and potassium-doped woody char were used. The influence of the gasification agent, char concentration, char weight time (proportional to the instant char mass present in the bed), and bed temperature (600-1050 degrees C) was investigated. Increasing the char concentration and char weight time increased benzene conversions for all tested chars. At similar char weight times, the benzene conversion increased with temperature, whereas the iron- and potassium doped char did not affect the specific conversion. At similar char concentrations, changing the gasification agent from CO2 to steam as well as using doped char led to decreased benzene conversions. This can be explained by accelerated char gasification reactions and thus a diminished char mass in the packed bed. Furthermore, benzene conversion rates were enhanced in the presence of CO2 as compared to steam. As the temperature was increased from 950 to 1050 degrees C, the benzene conversions were slightly reduced. This was interpreted as a combined effect of the enhanced benzene conversion rates and reduced char weight times. The highest benzene conversions achieved in the experiments were approximately 80% at 950-1000 degrees C using CO2 as gasification agent and supplying approximately 20-30 g N m(-3) undoped woody char.
  •  
5.
  • Morgalla, Mario, 1987-, et al. (författare)
  • Benzene conversion in a packed bed loaded with biomass char particles
  • 2018
  • Ingår i: Energy & Fuels. - : American Chemical Society (ACS). - 0887-0624 .- 1520-5029. ; 32:1, s. 554-560
  • Tidskriftsartikel (refereegranskat)abstract
    • This study investigates the conversion of benzene in a packed bed containing fine char particles. Benzene and steam were simultaneously supplied to a tubular ceramic reactor that was heated electrically. Fragmented char particles were suspended and continuously supplied via a separate supply line. A packed bed of crushed alumina balls was positioned in the reactor to retain the char particles. The benzene conversion in the hot char bed was investigated by varying the bed temperature (900–1100 °C), steam concentration (0–27 vol %), and char concentration (5–50 g Nm–3). The highest conversions achieved in the experiments were approximately 75%. At comparable char concentrations, similar benzene conversions occurred at 900 and 1000 °C. Increasing the temperature to 1100 °C or increasing the steam concentration reduced the benzene conversion. The results indicate that the reduced conversion was due to enhanced char gasification reactions at elevated temperatures and steam concentrations and thus to reduced char mass in the packed bed.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-5 av 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy