SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Lindh Jenny M.) srt2:(2015-2019)"

Sökning: WFRF:(Lindh Jenny M.) > (2015-2019)

  • Resultat 1-6 av 6
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Lindh, Jenny M., et al. (författare)
  • Discovery of an oviposition attractant for gravid malaria vectors of the Anopheles gambiae species complex
  • 2015
  • Ingår i: Malaria Journal. - : Springer Science and Business Media LLC. - 1475-2875. ; 14:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: New strategies are needed to manage malaria vector populations that resist insecticides and bite outdoors. This study describes a breakthrough in developing 'attract and kill' strategies targeting gravid females by identifying and evaluating an oviposition attractant for Anopheles gambiae s.l. Methods: Previously, the authors found that gravid An. gambiae s.s. females were two times more likely to lay eggs in lake water infused for six days with soil from a natural oviposition site in western Kenya compared to lake water alone or to the same but autoclaved infusion. Here, the volatile chemicals released from these substrates were analysed with a gas-chromatograph coupled to a mass-spectrometer (GC-MS). Furthermore, the behavioural responses of gravid females to one of the compounds identified were evaluated in dual choice egg-count bioassays, in dual-choice semi-field experiments with odour-baited traps and in field bioassays. Results: One of the soil infusion volatiles was readily identified as the sesquiterpene alcohol cedrol. Its widespread presence in natural aquatic habitats in the study area was confirmed by analysing the chemical headspace of 116 water samples collected from different aquatic sites in the field and was therefore selected for evaluation in oviposition bioassays. Twice as many gravid females were attracted to cedrol-treated water than to water alone in two choice cage bioassays (odds ratio (OR) 1.84; 95% confidence interval (CI) 1.16-2.91) and in experiments conducted in large-screened cages with free-flying mosquitoes (OR 1.92; 95% CI 1.63-2.27). When tested in the field, wild malaria vector females were three times more likely to be collected in the traps baited with cedrol than in the traps containing water alone (OR 3.3; 95% CI 1.4-7.9). Conclusion: Cedrol is the first compound confirmed as an oviposition attractant for gravid An. gambiae s.l. This finding paves the way for developing new 'attract and kill strategies' for malaria vector control.
  •  
2.
  • Dugassa, Sisay, et al. (författare)
  • Field evaluation of two novel sampling devices for collecting wild oviposition site seeking malaria vector mosquitoes : OviART gravid traps and squares of electrocuting nets
  • 2016
  • Ingår i: Parasites & Vectors. - : Springer Science and Business Media LLC. - 1756-3305. ; 9
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: New sampling tools are needed for collecting exophilic malaria mosquitoes in sub-Saharan Africa to monitor the impact of vector control interventions. The OviART gravid trap and squares of electrocuting nets (e-nets) were recently developed under semi-field conditions for collecting oviposition site seeking Anopheles gambiae (sensu stricto) (s.s.). This study was designed to evaluate the efficacy of these traps for sampling malaria vectors under field conditions. Methods: Prior to field testing, two modifications to the prototype OviART gravid trap were evaluated by (i) increasing the surface area and volume of water in the artificial pond which forms part of the trap, and (ii) increasing the strength of the suction fan. Six sampling tools targeting gravid females (Box gravid trap, detergent-treated ponds, e-nets insect glue-treated ponds, sticky boards and sticky floating-acetate sheets) were compared under field conditions to evaluate their relative catching performance and to select a method for comparison with the OviART gravid trap. Finally, the trapping efficacy of the OviART gravid trap and the square of e-nets were compared with a Box gravid trap during the long rainy season in three household clusters in western Kenya. Results: The OviART gravid trap prototype's catch size was doubled by increasing the pond size [rate ratio (RR) 1.9; 95 % confidence interval (CI) 1.1-3.4] but a stronger fan did not improve the catch. The square of e-nets performed better than the other devices, collecting three times more gravid Anopheles spp. than the Box gravid trap (RR 3.3; 95 % CI 1.4-7.6). The OviART gravid trap collections were comparable to those from the e-nets and 3.3 (95 % CI 1.5-7.0) times higher than the number of An. gambiae senso lato (s.l.) collected by the Box gravid trap. Conclusion: Both OviART gravid trap and squares of e-nets collected wild gravid Anopheles gambiae (s.l.) where natural habitats were within 200-400 m of the trap. Whilst the e-nets are difficult to handle and might therefore only be useful as a research device, the OviART gravid trap presents a promising new surveillance tool. Further field testing is needed in different eco-epidemiological settings to provide recommendations for its use.
  •  
3.
  • Eneh, Lynda K., et al. (författare)
  • Cedrol, a malaria mosquito oviposition attractant is produced by fungi isolated from rhizomes of the grass Cyperus rotundus
  • 2016
  • Ingår i: Malaria Journal. - : BioMed Central. - 1475-2875. ; 15
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Cedrol, a sesquiterpene alcohol, is the first identified oviposition attractant for African malaria vectors. Finding the natural source of this compound might help to elucidate why Anopheles gambiae and Anopheles arabiensis prefer to lay eggs in habitats containing it. Previous studies suggest that cedrol may be a fungal metabolite and the essential oil of grass rhizomes have been described to contain a high amount of different sesquiterpenes. Results: Rhizomes of the grass Cyperus rotundus were collected in a natural malaria mosquito breeding site. Two fungi were isolated from an aqueous infusion with these rhizomes. They were identified as Fusarium falciforme and a species in the Fusarium fujikuroi species complex. Volatile compounds were collected from the headspace above fungal cultures on Tenax traps which were analysed by gas chromatography-mass spectrometry (GCMS). Cedrol and a cedrol isomer were detected in the headspace above the F. fujikuroi culture, while only cedrol was detected above the F. falciforme culture. Conclusion: Cedrol an oviposition attractant for African malaria vectors is produced by two fungi species isolated from grass rhizomes collected from a natural mosquito breeding site.
  •  
4.
  • Eneh, Lynda K., et al. (författare)
  • Gravid Anopheles gambiae sensu stricto avoid ovipositing in Bermuda grass hay infusion and it's volatiles in two choice egg-count bioassays
  • 2016
  • Ingår i: Malaria Journal. - : BioMed Central. - 1475-2875. ; 15
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: A number of mosquito species in the Culex and Aedes genera prefer to lay eggs in Bermuda grass (Cynodon dactylon) hay infusions compared to water alone. These mosquitoes are attracted to volatile compounds from the hay infusions making the infusions effective baits in gravid traps used for monitoring vectors of arboviral and filarial pathogens. Since Bermuda grass is abundant and widespread, it is plausible to explore infusions made from it as a potential low cost bait for outdoor monitoring of the elusive malaria vector Anopheles gambiae s.s. Methods: This study investigated preferential egg laying of individual An. gambiae s.s. in hay infusion or in tap water treated with volatiles detected in hay infusion headspace compared to tap water alone, using two-choice egg-count bioassays. Infusions were prepared by mixing 90 g of dried Bermuda grass (hay) with 24 L of unchlorinated tap water in a bucket, and leaving it for 3 days at ambient temperature and humidity. The volatiles in the headspace of the hay infusion were sampled with Tenax TA traps for 20 h and analysed using gas chromatography coupled to mass spectrometry. Results: In total, 18 volatiles were detected in the infusion headspace. Nine of the detected compounds and nonanal were selected for bioassays. Eight of the selected compounds have previously been suggested to attract/stimulate egg laying in An. gambiae s.s. Gravid females were significantly (p < 0.05) less likely to lay eggs in hay infusion dilutions of 25, 50 and 100 % and in tap water containing any of six compounds (3-methylbutanol, phenol, 4-methylphenol, nonanal, indole, and 3-methylindole) compared to tap water alone. The oviposition response to 10 % hay infusion or any one of the remaining four volatiles (4-hepten-1-ol, phenylmethanol, 2-phenylethanol, or 4-ethylphenol) did not differ from that in tap water. Conclusions: Anopheles gambiae s.s. prefers to lay eggs in tap water rather than Bermuda grass hay infusion. This avoidance of the hay infusion appears to be mediated by volatile organic compounds from the infusion. It is, therefore, unlikely that Bermuda grass hay infusion as formulated and used in gravid traps for Culex and Aedes mosquitoes will be suitable baits for monitoring gravid An. gambiae s.s.
  •  
5.
  • Okal, Michael N., et al. (författare)
  • Analysing chemical attraction of gravid Anopheles gambiae sensu stricto with modified BG-Sentinel traps
  • 2015
  • Ingår i: Parasites & Vectors. - : Springer Science and Business Media LLC. - 1756-3305. ; 8:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Cues that guide gravid Anopheles gambiae sensu lato to oviposition sites can be manipulated to create new strategies for monitoring and controlling malaria vectors. However, progress towards identifying such cues is slow in part due to the lack of appropriate tools for investigating long-range attraction to putative oviposition substrates. This study aimed to develop a relatively easy-to-use bioassay system that can effectively analyse chemical attraction of gravid Anopheles gambiae sensu stricto. Methods: BG-Sentinel (TM) mosquito traps that use fans to dispense odourants were modified to contain aqueous substrates. Choice tests with two identical traps set in an 80 m(2) screened semi-field system were used to analyse the catch efficacy of the traps and the effectiveness of the bioassay. A different batch of 200 gravid An. gambiae s.s. was released on every experimental night. Choices tested were (1) distilled versus distilled water (baseline) and (2) distilled water versus soil infusion. Further, comparisons were made of distilled water and soil infusions both containing 150 g/l of Sodium Chloride (NaCl). Sodium Chloride is known to affect the release rate of volatiles from organic substrates. Results: When both traps contained distilled water, 45 % (95 confidence interval (CI) 33-57 %) of all released mosquitoes were trapped. The proportion increased to 84 % (95 CI 73-91 %) when traps contained soil infusions. In choice tests, a gravid female was twice as likely to be trapped in the test trap with soil infusion as in the trap with distilled water (odds ratio (OR) 1.8, 95 % CI 1.3-2.6). Furthermore, the attraction of gravid females towards the test trap with infusion more than tripled (OR 3.4, 95 % CI 2.4-4.8) when salt was added to the substrates. Conclusion: Minor modifications of the BG-Sentinel (TM) mosquito trap turned it into a powerful bioassay tool for evaluating the orientation of gravid mosquitoes to putative oviposition substrates using olfaction. This study describes a useful tool for investigating olfactory attraction of gravid An. gambiae s.s. and provides additional evidence that gravid mosquitoes of this species are attracted to and can be baited with attractive substrates such as organic infusions over a distance of several metres.
  •  
6.
  • Okal, Michael N., et al. (författare)
  • Analysing the oviposition behaviour of malaria mosquitoes : design considerations for improving two-choice egg count experiments
  • 2015
  • Ingår i: Malaria Journal. - : Springer Science and Business Media LLC. - 1475-2875. ; 14:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Choice egg-count bioassays are a popular tool for analysing oviposition substrate preferences of gravid mosquitoes. This study aimed at improving the design of two-choice experiments for measuring oviposition substrates preferences of the malaria vector Anopheles gambiae senso lato, a mosquito that lays single eggs. Methods: In order to achieve high egg-laying success of female An. gambiae sensu stricto (s.s.) and Anopheles arabiensis mosquitoes in experiments, four factors were evaluated: (1) the time provided for mating; (2) the impact of cage size, mosquito age and female body size on insemination; (3) the peak oviposition time; and, (4) the host sources of blood meal. Choice bioassays, with one mosquito released in each cage containing two oviposition cups both with the same oviposition substrate (100 ml water), were used to measure and adjust for egg-laying characteristics of the species. Based on these characteristics an improved design for the egg-count bioassay is proposed. Results: High oviposition rates [84%, 95% confidence interval (CI) 77-89%] were achieved when 300 male and 300 blood-fed female An. gambiae s.s. were held together in a cage for 4 days. The chances for oviposition dropped (odds ratio 0.30; 95% CI 0.14-0.66) when human host source of blood meal was substituted with a rabbit but egg numbers per female were not affected. The number of eggs laid by individual mosquitoes was overdispersed (median = 52, eggs, interquartile range 1-214) and the numbers of eggs laid differed widely between replicates, leading to a highly heterogeneous variance between groups and/or rounds of experiments. Moreover, one-third of mosquitoes laid eggs unequally in both cups with similar substrates giving the illusion of choice. Sample size estimations illustrate that it takes 165 individual mosquitoes to power bioassays sufficiently (power = 0.8, p = 0.05) to detect a 15% shift in comparative preferences of two treatments. Conclusion: Two-choice egg count bioassays with Anopheles are best done with a two-tier design that (1) implements a parallel series of experiments with mosquitoes given a choice of two identical substrates choices and, (2) uses a single mosquito in each test cage rather than groups of mosquitoes to assess the preference of a test or control solution. This approach, with sufficient replication, lowers the risk detecting pseudopreferences.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-6 av 6

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy