SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Liu Lijie) srt2:(2024)"

Sökning: WFRF:(Liu Lijie) > (2024)

  • Resultat 1-2 av 2
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Li, Jian, et al. (författare)
  • Assembly and succession of the phyllosphere microbiome and nutrient-cycling genes during plant community development in a glacier foreland
  • 2024
  • Ingår i: Environment International. - 0160-4120. ; 187
  • Tidskriftsartikel (refereegranskat)abstract
    • The phyllosphere, particularly the leaf surface of plants, harbors a diverse range of microbiomes that play a vital role in the functioning of terrestrial ecosystems. However, our understanding of microbial successions and their impact on functional genes during plant community development is limited. In this study, considering core and satellite microbial taxa, we characterized the phyllosphere microbiome and functional genes in various microhabitats (i.e., leaf litter, moss and plant leaves) across the succession of a plant community in a low-altitude glacier foreland. Our findings indicate that phyllosphere microbiomes and associated ecosystem stability increase during the succession of the plant community. The abundance of core taxa increased with plant community succession and was primarily governed by deterministic processes. In contrast, satellite taxa abundance decreased during plant community succession and was mainly governed by stochastic processes. The abundance of microbial functional genes (such as C, N, and P hydrolysis and fixation) in plant leaves generally increased during the plant community succession. However, in leaf litter and moss leaves, only a subset of functional genes (e.g., C fixation and degradation, and P mineralization) showed a tendency to increase with plant community succession. Ultimately, the community of both core and satellite taxa collaboratively influenced the characteristics of phyllosphere nutrient-cycling genes, leading to the diverse profiles and fluctuating abundance of various functional genes during plant community succession. These findings offer valuable insights into the phyllosphere microbiome and plant–microbe interactions during plant community development, advancing our understanding of the succession and functional significance of the phyllosphere microbial community.
  •  
2.
  • Quinatoa, Daysi, et al. (författare)
  • The first ground-based detection of the 752 GHz water line in local ultraluminous infrared galaxies using APEX-SEPIA
  • 2024
  • Ingår i: Monthly Notices of the Royal Astronomical Society. - 0035-8711 .- 1365-2966. ; 527:3, s. 6321-6331
  • Tidskriftsartikel (refereegranskat)abstract
    • We report the first ground-based detection of the water line p-H2O (211-202) at 752.033 GHz in three z < 0.08 ultraluminous infrared galaxies (ULIRGs): IRAS 06035-7102, IRAS 17207-0014, and IRAS 09022-3615. Using the Atacama Pathfinder EXperiment (APEX), with its Swedish-ESO PI Instrument for APEX (SEPIA) band-9 receiver, we detect this H2O line with overall signal-to-noise ratios of 8-10 in all three galaxies. Notably, this is the first detection of this line in IRAS 06035-7102. Our new APEX-measured fluxes, between 145 and 705 Jy km s-1, are compared with previous values taken from Herschel SPIRE FTS. We highlight the great capabilities of APEX for resolving the H2O line profiles with high spectral resolutions while also improving by a factor of two the significance of the detection within moderate integration times. While exploring the correlation between the p-H2O(211-202) and the total infrared luminosity, our galaxies are found to follow the trend at the bright end of the local ULIRG's distribution. The p-H2O(211-202) line spectra are compared to the mid-J CO and HCN spectra, and dust continuum previously observed with ALMA. In the complex interacting system IRAS 09022-3615, the profile of the water emission line is offset in velocity with respect to the ALMA CO(J = 4-3) emission. For IRAS 17207-0014 and IRAS 06035-7102, the profiles between the water line and the CO lines are spectroscopically aligned. This pilot study demonstrates the feasibility of directly conducting ground-based high-frequency observations of this key water line, opening the possibility of detailed follow-up campaigns to tackle its nature.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-2 av 2

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy