SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Liu Yujie) srt2:(2019)"

Sökning: WFRF:(Liu Yujie) > (2019)

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • de Vries, Paul S., et al. (författare)
  • Multiancestry Genome-Wide Association Study of Lipid Levels Incorporating Gene-Alcohol Interactions
  • 2019
  • Ingår i: American Journal of Epidemiology. - : Oxford University Press. - 0002-9262 .- 1476-6256. ; 188:6, s. 1033-1054
  • Tidskriftsartikel (refereegranskat)abstract
    • A person's lipid profile is influenced by genetic variants and alcohol consumption, but the contribution of interactions between these exposures has not been studied. We therefore incorporated gene-alcohol interactions into a multiancestry genome-wide association study of levels of high-density lipoprotein cholesterol, low-density lipoprotein cholesterol, and triglycerides. We included 45 studies in stage 1 (genome-wide discovery) and 66 studies in stage 2 (focused follow-up), for a total of 394,584 individuals from 5 ancestry groups. Analyses covered the period July 2014-November 2017. Genetic main effects and interaction effects were jointly assessed by means of a 2-degrees-of-freedom (df) test, and a 1-df test was used to assess the interaction effects alone. Variants at 495 loci were at least suggestively associated (P < 1 x 10(-6)) with lipid levels in stage 1 and were evaluated in stage 2, followed by combined analyses of stage 1 and stage 2. In the combined analysis of stages 1 and 2, a total of 147 independent loci were associated with lipid levels at P < 5 x 10(-8) using 2-df tests, of which 18 were novel. No genome-wide-significant associations were found testing the interaction effect alone. The novel loci included several genes (proprotein convertase subtilisin/kexin type 5 (PCSK5), vascular endothelial growth factor B (VEGFB), and apolipoprotein B mRNA editing enzyme, catalytic polypeptide 1 (APOBEC1) complementation factor (A1CF)) that have a putative role in lipid metabolism on the basis of existing evidence from cellular and experimental models.
  •  
2.
  • Sun, Huiliang, et al. (författare)
  • A monothiophene unit incorporating both fluoro and ester substitution enabling high-performance donor polymers for non-fullerene solar cells with 16.4% efficiency
  • 2019
  • Ingår i: Energy & Environmental Science. - : ROYAL SOC CHEMISTRY. - 1754-5692 .- 1754-5706. ; 12:11, s. 3328-3337
  • Tidskriftsartikel (refereegranskat)abstract
    • Thiophene and its derivatives have been extensively used in organic electronics, particularly in the field of polymer solar cells (PSCs). Significant research efforts have been dedicated to modifying thiophene-based units by attaching electron-donating or withdrawing groups to tune the energy levels of conjugated materials. Herein, we report the design and synthesis of a novel thiophene derivative, FE-T, featuring a monothiophene functionalized with both an electron-withdrawing fluorine atom (F) and an ester group (E). The FE-T unit possesses distinctive advantages of both F and E groups, the synergistic effects of which enable significant downshifting of the energy levels and enhanced aggregation/crystallinity of the resulting organic materials. Shown in this work are a series of polymers obtained by incorporating the FE-T unit into a PM6 polymer to fine-tune the energetics and morphology of this high-performance PSC material. The optimal polymer in the series shows a downshifted HOMO and an improved morphology, leading to a high PCE of 16.4% with a small energy loss (0.53 eV) enabled by the reduced non-radiative energy loss (0.23 eV), which are among the best values reported for non-fullerene PSCs to date. This work shows that the FE-T unit is a promising building block to construct donor polymers for high-performance organic photovoltaic cells.
  •  
3.
  • Rehman, Hafeez Ur, et al. (författare)
  • High-cycle-life and high-loading copolymer network with potential application as a soft actuator
  • 2019
  • Ingår i: Materials & design. - : ELSEVIER SCI LTD. - 0264-1275 .- 1873-4197. ; 182
  • Tidskriftsartikel (refereegranskat)abstract
    • Thermo-responsive polymer materials ate appealing in emerging fields including soft robotics, artificial muscles, and actuators. However, realising a single smart polymer material that can achieve immense strain, fast actuation, and high loading remains a challenge. We attempted to address these limitations by fabricating a thermo-responsive copolymer network structure of poly(urethane-caprolactone-siloxane). The relative concentrations of these precursors were adjusted to realise a high mechanical strength of >= 17 MPa, 100% shape fixation, and a quick shape recovery time of <= 15 s. Experimental results revealed that the soft segments largely determines the extensibility and crystallinity of the copolymer material. The thermal gradient of the soft part enables the copolymer to self-heal during shape recovery. The copolymer network was applied to a load lifting device as an artificial muscle and was able to lift 200 times its weight with a short response time of <5 s and maximum power density that was half that of mammalian skeletal muscles. With its fast actuation, high loading, and self-healing abilities, the developed therrno-activated smart copolymer material is potentially applicable to a wide range of fields such as soft robotics, biomimetic devices, and prosthetics.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy