SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Locatelli Francesca) srt2:(2024)"

Sökning: WFRF:(Locatelli Francesca) > (2024)

  • Resultat 1-2 av 2
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Balducci, Marco, et al. (författare)
  • SARS-CoV-2 vaccination and risk of infectious diseases in hospitalized older patients
  • 2024
  • Ingår i: European Geriatric Medicine. - 1878-7649 .- 1878-7657. ; 15:2, s. 509-517
  • Tidskriftsartikel (refereegranskat)abstract
    • Purpose Vaccinations, for example flu vaccine, may be a cause of cross-reactive immunostimulation that prevents a larger spectrum of infections. However, whether SARS-CoV-2 vaccinations may also determine this effect is unclear. This study aims, first, to assess the incidence of infections at hospital admission and during the hospitalization in older inpatients vaccinated and unvaccinated against SARS-CoV-2; second, to compare length of hospital stay and in-hospital mortality between vaccinated and unvaccinated individuals.Methods This retrospective study included 754 older inpatients admitted to the Geriatrics and Orthogeriatrics Units of the University Hospital of Ferrara (Italy) between March 2021 and November 2021. Sociodemographic and health-related data, and the diagnosis of infections at hospital admission and during hospitalization were collected from medical records.Results The sample’s mean age was 87.2 years, 59.2% were females, and 75.5% were vaccinated against SARS-CoV-2. Vaccinated individuals had 36% lower odds of intra-hospital infections (OR = 0.64, 95%CI 0.44–0.94) and 39% lower in-hospital death (HR = 0.61, 95%CI 0.39–0.95), also after adjusting for potential confounders, while no significant results emerged about infections at hospital admission. Considering the hospitalization’s endpoints, SARS-CoV-2 vaccination was associated with a lower probability of being transferred to long-term care or other hospital departments than returning home (OR = 0.63, 95%CI 0.40–0.99).Conclusions In older inpatients, SARS-CoV-2 vaccination seems to be associated with a lower likelihood of intra-hospital infectious diseases not caused by SARS-CoV-2 and all-cause in-hospital mortality. The vaccination coverage in the older population could limit not only the onset and severity of COVID-19 but also the occurrence of other infectious diseases.
  •  
2.
  • Brondin, Carlo Alberto, et al. (författare)
  • Tailoring Magnetic Anisotropy in Ultrathin Cobalt by Surface Carbon Chemistry
  • 2024
  • Ingår i: Advanced Electronic Materials. - 2199-160X. ; 10:4
  • Tidskriftsartikel (refereegranskat)abstract
    • The ability to manipulate magnetic anisotropy is essential for magnetic sensing and storage tools. Surface carbon species offer cost-effective alternatives to metal-oxide and noble metal capping layers, inducing perpendicular magnetic anisotropy in ultrathin ferromagnetic films. Here, the different mechanisms by which the magnetism in a few-layer-thick Co thin film is modified upon adsorption of carbon monoxide (CO), dispersed carbon, and graphene are elucidated. Using X-ray microscopy with chemical and magnetic sensitivity, the in-plane to out-of-plane spin reorientation transition in cobalt is monitored during the accumulation of surface carbon up to the formation of graphene. Complementary magneto-optical measurements show weak perpendicular magnetic anisotropy (PMA) at room temperature for dispersed carbon on Co, while graphene-covered cobalt exhibits a significant out-of-plane coercive field. Density-functional theory (DFT) calculations show that going from CO/Co to C/Co and to graphene/Co, the magnetocrystalline and magnetostatic anisotropies combined promote out-of-plane magnetization. Anisotropy energies weakly depend on carbidic species coverage. Instead, the evolution of the carbon chemical state from carbidic to graphitic is accompanied by an exponential increase in the characteristic domain size, controlled by the magnetic anisotropy energy. Beyond providing a basic understanding of the carbon-ferromagnet interfaces, this study presents a sustainable approach to tailor magnetic anisotropy in ultrathin ferromagnetic films. Magnetic properties of Co ultrathin films are shown to undergo dramatic changes upon surface carbon accumulation. Chemical transformation from molecular carbon monoxide to surface carbide and to a graphene layer progressively enhances the perpendicular magnetic anisotropy of Co. Calculations reveal that magnetocrystalline and magnetostatic contributions play distinctly different roles for the different carbon species.image
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-2 av 2

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy