SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Lomas D) srt2:(2010-2014)"

Sökning: WFRF:(Lomas D) > (2010-2014)

  • Resultat 1-20 av 20
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Romanelli, F, et al. (författare)
  • Overview of the JET results
  • 2011
  • Ingår i: Nuclear Fusion. - : IOP Publishing. - 1741-4326 .- 0029-5515. ; 51:9
  • Tidskriftsartikel (refereegranskat)abstract
    • Since the last IAEA Conference JET has been in operation for one year with a programmatic focus on the qualification of ITER operating scenarios, the consolidation of ITER design choices and preparation for plasma operation with the ITER-like wall presently being installed in JET. Good progress has been achieved, including stationary ELMy H-mode operation at 4.5 MA. The high confinement hybrid scenario has been extended to high triangularity, lower ρ*and to pulse lengths comparable to the resistive time. The steady-state scenario has also been extended to lower ρ*and ν*and optimized to simultaneously achieve, under stationary conditions, ITER-like values of all other relevant normalized parameters. A dedicated helium campaign has allowed key aspects of plasma control and H-mode operation for the ITER non-activated phase to be evaluated. Effective sawtooth control by fast ions has been demonstrated with3He minority ICRH, a scenario with negligible minority current drive. Edge localized mode (ELM) control studies using external n = 1 and n = 2 perturbation fields have found a resonance effect in ELM frequency for specific q95values. Complete ELM suppression has, however, not been observed, even with an edge Chirikov parameter larger than 1. Pellet ELM pacing has been demonstrated and the minimum pellet size needed to trigger an ELM has been estimated. For both natural and mitigated ELMs a broadening of the divertor ELM-wetted area with increasing ELM size has been found. In disruption studies with massive gas injection up to 50% of the thermal energy could be radiated before, and 20% during, the thermal quench. Halo currents could be reduced by 60% and, using argon/deuterium and neon/deuterium gas mixtures, runaway electron generation could be avoided. Most objectives of the ITER-like ICRH antenna have been demonstrated; matching with closely packed straps, ELM resilience, scattering matrix arc detection and operation at high power density (6.2 MW m-2) and antenna strap voltages (42 kV). Coupling measurements are in very good agreement with TOPICA modelling. © 2011 IAEA, Vienna.
  •  
2.
  • Abel, I, et al. (författare)
  • Overview of the JET results with the ITER-like wall
  • 2013
  • Ingår i: Nuclear Fusion. - : IOP Publishing. - 1741-4326 .- 0029-5515. ; 53:10, s. 104002-
  • Tidskriftsartikel (refereegranskat)abstract
    • Following the completion in May 2011 of the shutdown for the installation of the beryllium wall and the tungsten divertor, the first set of JET campaigns have addressed the investigation of the retention properties and the development of operational scenarios with the new plasma-facing materials. The large reduction in the carbon content (more than a factor ten) led to a much lower Z(eff) (1.2-1.4) during L- and H-mode plasmas, and radiation during the burn-through phase of the plasma initiation with the consequence that breakdown failures are almost absent. Gas balance experiments have shown that the fuel retention rate with the new wall is substantially reduced with respect to the C wall. The re-establishment of the baseline H-mode and hybrid scenarios compatible with the new wall has required an optimization of the control of metallic impurity sources and heat loads. Stable type-I ELMy H-mode regimes with H-98,H-y2 close to 1 and beta(N) similar to 1.6 have been achieved using gas injection. ELM frequency is a key factor for the control of the metallic impurity accumulation. Pedestal temperatures tend to be lower with the new wall, leading to reduced confinement, but nitrogen seeding restores high pedestal temperatures and confinement. Compared with the carbon wall, major disruptions with the new wall show a lower radiated power and a slower current quench. The higher heat loads on Be wall plasma-facing components due to lower radiation made the routine use of massive gas injection for disruption mitigation essential.
  •  
3.
  • Beurskens, M N A, et al. (författare)
  • H-mode pedestal scaling in DIII-D, ASDEX Upgrade, and JET
  • 2011
  • Ingår i: Physics of Plasmas. - : AIP Publishing. - 1070-664X .- 1089-7674. ; 18:5
  • Tidskriftsartikel (refereegranskat)abstract
    • Multidevice pedestal scaling experiments in the DIII-D, ASDEX Upgrade (AUG), and JET tokamaks are presented in order to test two plasma physics pedestal width models. The first model proposes a scaling of the pedestal width Delta/a proportional to rho*(1/2) to rho* based on the radial extent of the pedestal being set by the point where the linear turbulence growth rate exceeds the E x B velocity. In the multidevice experiment where rho* at the pedestal top was varied by a factor of four while other dimensionless parameters where kept fixed, it has been observed that the temperature pedestal width in real space coordinates scales with machine size, and that therefore the gyroradius scaling suggested by the model is not supported by the experiments. The density pedestal width is not invariant with rho* which after comparison with a simple neutral fuelling model may be attributed to variations in the neutral fuelling patterns. The second model, EPED1, is based on kinetic ballooning modes setting the limit of the radial extent of the pedestal region and leads to Delta(psi) proportional to beta p(1/2). All three devices show a scaling of the pedestal width in normalised poloidal flux as Delta(psi) proportional to beta p(1/2), as described by the kinetic ballooning model; however, on JET and AUG, this could not be distinguished from an interpretation where the pedestal is fixed in real space. Pedestal data from all three devices have been compared with the predictive pedestal model EPED1 and the model produces pedestal height values that match the experimental data well.
  •  
4.
  • Fisher, J. B., et al. (författare)
  • Carbon cycle uncertainty in the Alaskan Arctic
  • 2014
  • Ingår i: Biogeosciences. - : Copernicus GmbH. - 1726-4189. ; 11:15, s. 4271-4288
  • Tidskriftsartikel (refereegranskat)abstract
    • Climate change is leading to a disproportionately large warming in the high northern latitudes, but the magnitude and sign of the future carbon balance of the Arctic are highly uncertain. Using 40 terrestrial biosphere models for the Alaskan Arctic from four recent model intercomparison projects - NACP (North American Carbon Program) site and regional syntheses, TRENDY (Trends in net land atmosphere carbon exchanges), and WETCHIMP (Wetland and Wetland CH4 Inter-comparison of Models Project) - we provide a baseline of terrestrial carbon cycle uncertainty, defined as the multi-model standard deviation (sigma) for each quantity that follows. Mean annual absolute uncertainty was largest for soil carbon (14.0+/-9.2 kgCm(-2)), then gross primary production (GPP) (0.22+/-0.50 kgCm(-2) yr(-1)), ecosystem respiration (Re) (0.23+/-0.38 kgCm(-2) yr(-1)), net primary production (NPP) (0.14+/-0.33 kgCm(-2) yr(-1)), autotrophic respiration (Ra) (0.09+/-0.20 kgCm(-2) yr(-1)), heterotrophic respiration (Rh) (0.14+/-0.20 kgCm(-2) yr(-1)), net ecosystem exchange (NEE) (-0.01+/-0.19 kgCm(-2) yr(-1)), and CH4 flux (2.52+/-4.02 g CH4 m(-2) yr(-1)). There were no consistent spatial patterns in the larger Alaskan Arctic and boreal regional carbon stocks and fluxes, with some models showing NEE for Alaska as a strong carbon sink, others as a strong carbon source, while still others as carbon neutral. Finally, AmeriFlux data are used at two sites in the Alaskan Arctic to evaluate the regional patterns; observed seasonal NEE was captured within multi-model uncertainty. This assessment of carbon cycle uncertainties may be used as a baseline for the improvement of experimental and modeling activities, as well as a reference for future trajectories in carbon cycling with climate change in the Alaskan Arctic and larger boreal region.
  •  
5.
  • Giroud, C., et al. (författare)
  • Integration of a radiative divertor for heat load control into JET high triangularity ELMy H-mode plasmas
  • 2012
  • Ingår i: Nuclear Fusion. - : IOP Publishing. - 0029-5515 .- 1741-4326. ; 52:6, s. 063022-
  • Tidskriftsartikel (refereegranskat)abstract
    • Experiments on JET with a carbon-fibre composite wall have explored the reduction of steady-state power load in an ELMy H-mode scenario at high Greenwald fraction similar to 0.8, constant power and close to the L to H transition. This paper reports a systematic study of power load reduction due to the effect of fuelling in combination with seeding over a wide range of pedestal density ((4-8) x 10(19) m(-3)) with detailed documentation of divertor, pedestal and main plasma conditions, as well as a comparative study of two extrinsic impurity nitrogen and neon. It also reports the impact of steady-state power load reduction on the overall plasma behaviour, as well as possible control parameters to increase fuel purity. Conditions from attached to fully detached divertor were obtained during this study. These experiments provide reference plasmas for comparison with a future JET Be first wall and an all W divertor where the power load reduction is mandatory for operation.
  •  
6.
  • Solano, E. R., et al. (författare)
  • Observation of Confined Current Ribbon in JET Plasmas
  • 2010
  • Ingår i: Physical Review Letters. - 0031-9007 .- 1079-7114. ; 104:18, s. 185003-
  • Tidskriftsartikel (refereegranskat)abstract
    • We report the identification of a localized current structure inside the JET plasma. It is a field-aligned closed helical ribbon, carrying current in the same direction as the background current profile (cocurrent), rotating toroidally with the ion velocity (corotating). It appears to be located at a flat spot in the plasma pressure profile, at the top of the pedestal. The structure appears spontaneously in low density, high rotation plasmas, and can last up to 1.4 s, a time comparable to a local resistive time. It considerably delays the appearance of the first edge localized mode.
  •  
7.
  • Beurskens, M. N. A., et al. (författare)
  • Comparison of hybrid and baseline ELMy H-mode confinement in JET with the carbon wall
  • 2013
  • Ingår i: Nuclear Fusion. - : IOP Publishing. - 0029-5515 .- 1741-4326. ; 53:1, s. 013001-
  • Tidskriftsartikel (refereegranskat)abstract
    • The confinement in JET baseline type I ELMy H-mode plasmas is compared to that in so-called hybrid H-modes in a database study of 112 plasmas in JET with the carbon fibre composite (CFC) wall. The baseline plasmas typically have βN ∼ 1.5-2, H98 ∼ 1, whereas the hybrid plasmas have βN ∼ 2.5-3, H98 < 1.5. The database study contains both low- (δ ∼ 0.2-0.25) and high-triangularity (δ ∼ 0.4) hybrid and baseline H-mode plasmas from the last JET operational campaigns in the CFC wall from the period 2008-2009. Based on a detailed confinement study of the global as well as the pedestal and core confinement, there is no evidence that the hybrid and baseline plasmas form separate confinement groups; it emerges that the transition between the two scenarios is of a gradual kind rather than demonstrating a bifurcation in the confinement. The elevated confinement enhancement factor H98 in the hybrid plasmas may possibly be explained by the density dependence in the τ98 scaling as n0.41 and the fact that the hybrid plasmas operate at low plasma density compared to the baseline ELMy H-mode plasmas. A separate regression on the confinement data in this study shows a reduction in the density dependence as n0.09±0.08. Furthermore, inclusion of the plasma toroidal rotation in the confinement regression provides a scaling with the toroidal Alfvén Mach number as and again a reduced density dependence as n0.15±0.08. The differences in pedestal confinement can be explained on the basis of linear MHD stability through a coupling of the total and pedestal poloidal pressure and the pedestal performance can be improved through plasma shaping as well as high β operation. This has been confirmed in a comparison with the EPED1 predictive pedestal code which shows a good agreement between the predicted and measured pedestal pressure within 20-30% for a wide range of βN ∼ 1.5-3.5. The core profiles show a strong degree of pressure profile consistency. No beneficial effect of core density peaking on confinement could be identified for the majority of the plasmas presented here as the density peaking is compensated by a temperature de-peaking resulting in no or only a weak variation in the pressure peaking. The core confinement could only be optimized in case the ions and electrons are decoupled, in which case the ion temperature profile peaking can be enhanced, which benefits confinement. In this study, the latter has only been achieved in the low-triangularity hybrid plasmas, and can be attributed to low-density operation. Plasma rotation has been found to reduce core profile stiffness, and can explain an increase in profile peaking at small radius ρtor = 0.3.
  •  
8.
  •  
9.
  • Joffrin, E., et al. (författare)
  • First scenario development with the JET new ITER-like wall
  • 2014
  • Ingår i: Nuclear Fusion. - : IOP Publishing. - 0029-5515 .- 1741-4326. ; 54:1, s. 013011-
  • Tidskriftsartikel (refereegranskat)abstract
    • In the recent JET experimental campaigns with the new ITER-like wall (JET-ILW), major progress has been achieved in the characterization and operation of the H-mode regime in metallic environments: (i) plasma breakdown has been achieved at the first attempt and X-point L-mode operation recovered in a few days of operation; (ii) stationary and stable type-I ELMy H-modes with beta(N) similar to 1.4 have been achieved in low and high triangularity ITER-like shape plasmas and are showing that their operational domain at H = 1 is significantly reduced with the JET-ILW mainly because of the need to inject a large amount of gas (above 10(22) Ds(-1)) to control core radiation; (iii) in contrast, the hybrid H-mode scenario has reached an H factor of 1.2-1.3 at beta(N) of 3 for 2-3 s; and, (iv) in comparison to carbon equivalent discharges, total radiation is similar but the edge radiation is lower and Z(eff) of the order of 1.3-1.4. Strong core radiation peaking is observed in H-mode discharges at a low gas fuelling rate (i. e. below 0.5 x 10(22) Ds(-1)) and low ELM frequency (typically less than 10 Hz), even when the tungsten influx from the diverter is constant. High-Z impurity transport from the plasma edge to the core appears to be the dominant factor to explain these observations. This paper reviews the major physics and operational achievements and challenges that an ITER-like wall configuration has to face to produce stable plasma scenarios with maximized performance.
  •  
10.
  • Maddison, G. P., et al. (författare)
  • Contrasting H-mode behaviour with deuterium fuelling and nitrogen seeding in the all-carbon and metallic versions of JET
  • 2014
  • Ingår i: Nuclear Fusion. - : IOP Publishing. - 0029-5515 .- 1741-4326. ; 54:7, s. 073016-
  • Tidskriftsartikel (refereegranskat)abstract
    • The former all-carbon wall on JET has been replaced with beryllium in the main torus and tungsten in the divertor to mimic the surface materials envisaged for ITER. Comparisons are presented between type I H-mode characteristics in each design by examining respective scans over deuterium fuelling and impurity seeding, required to ameliorate exhaust loads both in JET at full capability and in ITER. Attention is focused upon a common high-triangularity, single-null divertor configuration at 2.5 MA, q(95) approximate to 3.5 yielding the most robust all-C performance. Contrasting results between the alternative linings are found firstly in unseeded plasmas, for which purity is improved and intrinsic radiation reduced in the ITER-like wall (ILW) but normalized energy confinement is approximate to 30% lower than in all-C counterparts, owing to a commensurately lower (electron) pedestal temperature. Divertor recycling is also radically altered, with slower, inboard-outboard asymmetric transients at ELMs and spontaneous oscillations in between them. Secondly, nitrogen seeding elicits opposite responses in the ILW to all-C experience, tending to raise plasma density, reduce ELM frequency, and above all to recover (electron) pedestal pressure, hence global confinement, almost back to previous levels. A hitherto unrecognized role of light impurities in pedestal stability and dynamics is consequently suggested. Thirdly, while heat loads on the divertor outboard target between ELMs are successfully reduced in proportion to the radiative cooling and ELM frequency effects of N in both wall environments, more surprisingly, average power ejected by ELMs also declines in the same proportion for the ILW. Detachment between transients is simultaneously promoted. Finally, inter-ELM W sources in the ILW divertor tend to fall with N input, although core accumulation possibly due to increased particle confinement still leads to significantly less steady conditions than in all-C plasmas. This limitation of ILW H-modes so far will be readdressed in future campaigns to continue progress towards a fully integrated scenario suitable for D-T experiments on JET and for 'baseline' operation on ITER. The diverse changes in behaviour between all-C and ILW contexts demonstrate essentially the strong impact which boundary conditions and intrinsic impurities can have on tokamak-plasma states.
  •  
11.
  • Bafadhel, Mona, et al. (författare)
  • Acute Exacerbations of Chronic Obstructive Pulmonary Disease : Identification of Biologic Clusters and Their Biomarkers
  • 2011
  • Ingår i: American Journal of Respiratory and Critical Care Medicine. - 1073-449X .- 1535-4970. ; 184:6, s. 662-671
  • Tidskriftsartikel (refereegranskat)abstract
    • Rationale: Exacerbations of chronic obstructive pulmonary disease (COPD) are heterogeneous with respect to inflammation and etiology. Objectives: Investigate biomarker expression in COPD exacerbations to identify biologic clusters and determine biomarkers that recognize clinical COPD exacerbation phenotypes, namely those associated with bacteria, viruses, or eosinophilic airway inflammation. Methods: Patients with COPD were observed for 1 year at stable and exacerbation visits. Biomarkers were measured in sputum and serum. Viruses and selected bacteria were assessed in sputum by polymerase chain reaction and routine diagnostic bacterial culture. Biologic phenotypes were explored using unbiased cluster analysis and biomarkers that differentiated clinical exacerbation phenotypes were investigated. Measurements and Main Results: A total of 145 patients (101 men and 44 women) entered the study. A total of 182 exacerbations were captured from 86 patients. Four distinct biologic exacerbation clusters were identified. These were bacterial-, viral-, or eosinophilic-predominant, and a fourth associated with limited changes in the inflammatory profile termed "pauciinflammatory." Of all exacerbations, 55%, 29%, and 28% were associated with bacteria, virus, or a sputum eosinophilia. The biomarkers that best identified these clinical phenotypes were sputum IL-1 beta, 0.89 (area under receiver operating characteristic curve) (95% confidence interval [CI], 0.83-0.95); serum CXCL10, 0.83 (95% CI, 0.70-0.96); and percentage peripheral eosinophils, 0.85 (95% CI, 0.78-0.93), respectively. Conclusions: The heterogeneity of the biologic response of COPD exacerbations can be defined. Sputum IL-1 beta, serum CXCL10, and peripheral eosinophils are biomarkers of bacteria-, virus-, or eosinophil-associated exacerbations of COPD. Whether phenotype-specific biomarkers can be applied to direct therapy warrants further investigation.
  •  
12.
  • Bafadhel, Mona, et al. (författare)
  • Blood Eosinophils to Direct Corticosteroid Treatment of Exacerbations of Chronic Obstructive Pulmonary Disease A Randomized Placebo-Controlled Trial
  • 2012
  • Ingår i: American Journal of Respiratory and Critical Care Medicine. - 1073-449X .- 1535-4970. ; 186:1, s. 48-55
  • Tidskriftsartikel (refereegranskat)abstract
    • Rationale: Exacerbations of chronic obstructive pulmonary disease (COPD) and responses to treatment are heterogeneous. Objectives: Investigate the usefulness of blood eosinophils to direct corticosteroid therapy during exacerbations. Methods: Subjects with COPD exacerbations were entered into a randomized biomarker-directed double-blind corticosteroid versus standard therapy study. Subjects in the standard arm received prednisolone for 2 weeks, whereas in the biomarker-directed arm, prednisolone or matching placebo was given according to the blood eosinophil count biomarker. Both study groups received antibiotics. Blood eosinophils were measured in the biomarker-directed and standard therapy arms to define biomarker-positive and -negative exacerbations (blood eosinophil count > and <= 2%, respectively). The primary outcome was to determine noninferiority in health status using the chronic respiratory questionnaire (CRQ) and in the proportion of exacerbations associated with a treatment failure between subjects allocated to the biomarker-directed and standard therapy arms. Measurements and Main Results: There were 86 and 80 exacerbations in the biomarker-directed and standard treatment groups, respectively. In the biomarker-directed group, 49% of the exacerbations were not treated with prednisolone. CRQ improvement after treatment in the standard and biomarker-directed therapy groups was similar (0.8 vs. 1.1; mean difference, 0.3; 95% confidence interval, 0.0-0.6; P = 0.05). There was a greater improvement in CRQ in biomarker-negative exacerbations given placebo compared with those given prednisolone (mean difference, 0.45; 95% confidence interval, 0.01-0.90; P = 0.04). In biomarker-negative exacerbations, treatment failures occurred in 15% given prednisolone and 2% of those given placebo (P = 0.04). Conclusions: The peripheral blood eosinophil count is a promising biomarker to direct corticosteroid therapy during COPD exacerbations, but larger studies are required.
  •  
13.
  • Beurskens, M. N. A., et al. (författare)
  • The effect of a metal wall on confinement in JET and ASDEX Upgrade
  • 2013
  • Ingår i: Plasma Physics and Controlled Fusion. - : IOP Publishing. - 0741-3335 .- 1361-6587. ; 55:12, s. 124043-
  • Tidskriftsartikel (refereegranskat)abstract
    • In both JET and ASDEX Upgrade (AUG) the plasma energy confinement has been affected by the presence of a metal wall by the requirement of increased gas fuelling to avoid tungsten pollution of the plasma. In JET with a beryllium/tungsten wall the high triangularity baseline H-mode scenario (i.e. similar to the ITER reference scenario) has been the strongest affected and the benefit of high shaping to give good normalized confinement of H-98 similar to 1 at high Greenwald density fraction of f(GW) similar to 0.8 has not been recovered to date. In AUG with a full tungsten wall, a good normalized confinement H-98 similar to 1 could be achieved in the high triangularity baseline plasmas, albeit at elevated normalized pressure beta(N) > 2. The confinement lost with respect to the carbon devices can be largely recovered by the seeding of nitrogen in both JET and AUG. This suggests that the absence of carbon in JET and AUG with a metal wall may have affected the achievable confinement. Three mechanisms have been tested that could explain the effect of carbon or nitrogen (and the absence thereof) on the plasma confinement. First it has been seen in experiments and by means of nonlinear gyrokinetic simulations (with the GENE code), that nitrogen seeding does not significantly change the core temperature profile peaking and does not affect the critical ion temperature gradient. Secondly, the dilution of the edge ion density by the injection of nitrogen is not sufficient to explain the plasma temperature and pressure rise. For this latter mechanism to explain the confinement improvement with nitrogen seeding, strongly hollow Z(eff) profiles would be required which is not supported by experimental observations. The confinement improvement with nitrogen seeding cannot be explained with these two mechanisms. Thirdly, detailed pedestal structure analysis in JET high triangularity baseline plasmas have shown that the fuelling of either deuterium or nitrogen widens the pressure pedestal. However, in JET-ILW this only leads to a confinement benefit in the case of nitrogen seeding where, as the pedestal widens, the obtained pedestal pressure gradient is conserved. In the case of deuterium fuelling in JET-ILW the pressure gradient is strongly degraded in the fuelling scan leading to no net confinement gain due to the pedestal widening. The pedestal code EPED correctly predicts the pedestal pressure of the unseeded plasmas in JET-ILW within +/- 5%, however it does not capture the complex variation of pedestal width and gradient with fuelling and impurity seeding. Also it does not predict the observed increase of pedestal pressure by nitrogen seeding in JET-ILW. Ideal peeling ballooning MHD stability analysis shows that the widening of the pedestal leads to a down shift of the marginal stability boundary by only 10-20%. However, the variations in the pressure gradient observed in the JET-ILW fuelling experiment is much larger and spans a factor of more than two. As a result the experimental points move from deeply unstable to deeply stable on the stability diagram in a deuterium fuelling scan. In AUG-W nitrogen seeded plasmas, a widening of the pedestal has also been observed, consistent with the JET observations. The absence of carbon can thus affect the pedestal structure, and mainly the achieved pedestal gradient, which can be recovered by seeding nitrogen. The underlying physics mechanism is still under investigation and requires further understanding of the role of impurities on the pedestal stability and pedestal structure formation.
  •  
14.
  •  
15.
  • Giroud, C., et al. (författare)
  • Impact of nitrogen seeding on confinement and power load control of a high-triangularity JET ELMy H-mode plasma with a metal wall
  • 2013
  • Ingår i: Nuclear Fusion. - : IOP Publishing. - 0029-5515 .- 1741-4326. ; 53:11, s. 113025-
  • Tidskriftsartikel (refereegranskat)abstract
    • This paper reports the impact on confinement and power load of the high-shape 2.5MA ELMy H-mode scenario at JET of a change from all carbon plasma-facing components to an all metal wall. In preparation to this change, systematic studies of power load reduction and impact on confinement as a result of fuelling in combination with nitrogen seeding were carried out in JET-C and are compared with their counterpart in JET with a metallic wall. An unexpected and significant change is reported on the decrease in the pedestal confinement but is partially recovered with the injection of nitrogen.
  •  
16.
  •  
17.
  • Liang, Y, et al. (författare)
  • Mitigation of Type-I ELMs with n =2 Fields on JET
  • 2012
  • Ingår i: 24th IAEA Fusion Energy Conference, 8-13 October 2012. ; , s. EX/P4-23-
  • Konferensbidrag (refereegranskat)abstract
    • Recently, strong mitigation of Type-I Edge Localized Modes (ELMs) has been observed with application of the n = 2 field in high collisionality (nu^*_e=2.0) H-mode plasma on JET tokamak with ITER-like wall. In this experiment, the EFCC power supply system has been enhanced with a coil current up to 88kAt (twice than before). With an n = 2 field, the large type-I ELMs with frequency of ~ 45 Hz was replaced by the high frequency (few hundreds Hz) small ELMs. No density pump-out was observed during an application of the n = 2 field. The influence of the n = 2 field on the core and the pedestal electron pressure profiles is within the error bar and it can be neglected. During the normal type-I ELM H-mode phase, the maximal surface temperature (Tmax) on the outer divertor plate was overall increasing and associated with large periodical variation due to the type-I ELMs. However, during an application of the n = 2 field, Tmax was saturated and has only small variation in few degrees due to the small mitigated ELMs. Splitting of the outer strike point has been observed during the strong mitigation of the type-I ELMs.
  •  
18.
  • Liang, Y., et al. (författare)
  • Mitigation of type-I ELMs with n=2 fields on JET with ITER-like wall
  • 2013
  • Ingår i: Nuclear Fusion. - : IOP Publishing. - 0029-5515 .- 1741-4326. ; 53:7, s. 073036-
  • Tidskriftsartikel (refereegranskat)abstract
    • Mitigation of type-I edge-localized modes (ELMs) was observed with the application of an n = 2 field in H-mode plasmas on the JET tokamak with the ITER-like wall (ILW). Several new findings with the ILW were identified and contrasted to the previous carbon wall (C-wall) results for comparable conditions. Previous results for high collisionality plasmas (nu*(e,ped) similar to 2.0) with the C-wall saw little or no influence of either n = 1 or n = 2 fields on the ELMs. However, recent observations with the ILW show large type-I ELMs with a frequency of similar to 45 Hz were replaced by high-frequency (similar to 200 Hz) small ELMs during the application of the n = 2 field. With the ILW, splitting of the outer strike point was observed for the first time during the strong mitigation of the type-I ELMs. The maximal surface temperature (T-max) on the outer divertor plate reached a stationary state and has only small variations of a few degrees due to the small mitigated ELMs. In moderate collisionality (nu*(e,ped) similar to 0.8) H-mode plasmas, similar to previous results with the C-wall, both an increase in the ELM frequency and density pump-out were observed during the application of the n = 2 field. There are two new observations compared with the C-wall results. Firstly, the effect of ELM mitigation with the n = 2 field was seen to saturate so that the ELM frequency did not further increase above a certain level of n = 2 magnetic perturbations. Secondly splitting of the outer strike point during the ELM crash was seen, resulting in mitigation of the maximal ELM peak heat fluxes on the divertor region.
  •  
19.
  • Neu, R., et al. (författare)
  • First operation with the JET International Thermonuclear Experimental Reactor-like wall
  • 2013
  • Ingår i: Physics of Plasmas. - : AIP Publishing. - 1070-664X .- 1089-7674. ; 20:5, s. 056111-1-056111-13
  • Tidskriftsartikel (refereegranskat)abstract
    • To consolidate International Thermonuclear Experimental Reactor (ITER) design choices and prepare for its operation, Joint European Torus (JET) has implemented ITER's plasma facing materials, namely, Be for the main wall and W in the divertor. In addition, protection systems, diagnostics, and the vertical stability control were upgraded and the heating capability of the neutral beams was increased to over 30 MW. First results confirm the expected benefits and the limitations of all metal plasma facing components (PFCs) but also yield understanding of operational issues directly relating to ITER. H-retention is lower by at least a factor of 10 in all operational scenarios compared to that with C PFCs. The lower C content (≈ factor 10) has led to much lower radiation during the plasma burn-through phase eliminating breakdown failures. Similarly, the intrinsic radiation observed during disruptions is very low, leading to high power loads and to a slow current quench. Massive gas injection using a D2/Ar mixture restores levels of radiation and vessel forces similar to those of mitigated disruptions with the C wall. Dedicated L-H transition experiments indicate a 30% power threshold reduction, a distinct minimum density, and a pronounced shape dependence. The L-mode density limit was found to be up to 30% higher than for C allowing stable detached divertor operation over a larger density range. Stable H-modes as well as the hybrid scenario could be re-established only when using gas puff levels of a few 1021 es-1. On average, the confinement is lower with the new PFCs, but nevertheless, H factors up to 1 (H-Mode) and 1.3 (at β N ≈ 3, hybrids) have been achieved with W concentrations well below the maximum acceptable level.
  •  
20.
  • Sitch, S., et al. (författare)
  • Trends and drivers of regional sources and sinks of carbon dioxide over the past two decades
  • 2013
  • Ingår i: Biogeosciences Discussions. - : Copernicus GmbH. - 1810-6277. ; 10, s. 20113-20177
  • Tidskriftsartikel (övrigt vetenskapligt/konstnärligt)abstract
    • Abstract. The land and ocean absorb on average over half of the anthropogenic emissions of carbon dioxide (CO2) every year. These CO2 "sinks" are modulated by climate change and variability. Here we use a suite of nine Dynamic Global Vegetation Models (DGVMs) and four Ocean Biogeochemical General Circulation Models (OBGCMs) to quantify the global and regional climate and atmospheric CO2 – driven trends in land and oceanic CO2 exchanges with the atmosphere over the period 1990–2009, attribute these trends to underlying processes, and quantify the uncertainty and level of model agreement. The models were forced with reconstructed climate fields and observed global atmospheric CO2; Land Use and Land Cover Changes are not included for the DGVMs. Over the period 1990–2009, the DGVMs simulate a mean global land carbon sink of −2.4 ± 0.7 Pg C yr−1 with a small significant trend of −0.06 ± 0.03 Pg C yr−2 (increasing sink). Over the more limited period 1990–2004, the ocean models simulate a mean ocean sink of –2.2 ± 0.2 Pg C yr–1 with a trend in the net C uptake that is indistinguishable from zero (−0.01 ± 0.02 Pg C yr−2). The two ocean models that extended the simulations until 2009 suggest a slightly stronger, but still small trend of −0.02 ± 0.01 Pg C yr−2. Trends from land and ocean models compare favourably to the land greenness trends from remote sensing, atmospheric inversion results, and the residual land sink required to close the global carbon budget. Trends in the land sink are driven by increasing net primary production (NPP) whose statistically significant trend of 0.22 ± 0.08 Pg C yr−2 exceeds a significant trend in heterotrophic respiration of 0.16 ± 0.05 Pg C yr−2 – primarily as a consequence of wide-spread CO2 fertilisation of plant production. Most of the land-based trend in simulated net carbon uptake originates from natural ecosystems in the tropics (−0.04 ± 0.01 Pg C yr−2), with almost no trend over the northern land region, where recent warming and reduced rainfall offsets the positive impact of elevated atmospheric CO2 on carbon storage. The small uptake trend in the ocean models emerges because climate variability and change, and in particular increasing sea surface temperatures, tend to counteract the trend in ocean uptake driven by the increase in atmospheric CO2. Large uncertainty remains in the magnitude and sign of modelled carbon trends in several regions, and on the influence of land use and land cover changes on regional trends.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-20 av 20

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy