SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Losada Illa) "

Sökning: WFRF:(Losada Illa)

  • Resultat 1-11 av 11
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Jabbari, Sarah, et al. (författare)
  • Magnetic flux concentrations from dynamo-generated fields
  • 2014
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 568
  • Tidskriftsartikel (refereegranskat)abstract
    • Context The mean field theory of magnetized stellar convection gives rise to two distinct instabilities; the large-scale dynamo instability, operating in the bulk of the convection zone and a negative effective magnetic pressure instability (NEMPI) operating in the strongly stratified surface layers. The latter might be important in connection with magnetic spot formation. However, as follows from theoretical analysis, the growth rate of NEMPI is suppressed with increasing rotation rates. On the other hand, recent direct numerical simulations (DNS) have shown a subsequent increase in the growth rate. Aims. We examine quantitatively whether this increase in the growth rate of NEMPI can be explained by an alpha(2) mean field dynamo, and whether both NEMPI and the dynamo instability can operate at the same time. Methods. We use both DNS and mean field simulations (MFS) to solve the underlying equations numerically either with or without an imposed horizontal held, We use the test-field method to compute relevant dynamo coefficients. Results. DNS show that magnetic flux concentrations are still possible up to rotation rates above which the large-scale dynamo effect produces mean magnetic fields. The resulting DNS growth rates are quantitatively reproduced with MPS. As expected for weak or vanishing rotation, the growth rate of NEMPI increases with increasing gravity, but there is a correction term for strong gravity and large turbulent magnetic diffusivity. Conclusions. Magnetic flux concentrations are still possible for rotation rates above which dynamo action takes over For the solar rotation rate, the corresponding turbulent turnover time is about 5 h, with dynamo action commencing in the layers beneath.
  •  
2.
  • Losada, Illa Rivero, et al. (författare)
  • A new look at sunspot formation using theory and observations
  • 2016
  • Ingår i: Proceedings of the International Astronomical Union. - : Cambridge University Press. ; , s. 46-59
  • Konferensbidrag (refereegranskat)abstract
    • Sunspots are of basic interest in the study of the Sun. Their relevance ranges from them being an activity indicator of magnetic fields to being the place where coronal mass ejections and flares erupt. They are therefore also an important ingredient of space weather. Their formation, however, is still an unresolved problem in solar physics. Observations utilize just 2D surface information near the spot, but it is debatable how to infer deep structures and properties from local helioseismology. For a long time, it was believed that flux tubes rising from the bottom of the convection zone are the origin of the bipolar sunspot structure seen on the solar surface. However, this theory has been challenged, in particular recently by new surface observation, helioseismic inversions, and numerical models of convective dynamos. In this article we discuss another theoretical approach to the formation of sunspots: the negative effective magnetic pressure instability. This is a large-scale instability, in which the total (kinetic plus magnetic) turbulent pressure can be suppressed in the presence of a weak large-scale magnetic field, leading to a converging downflow, which eventually concentrates the magnetic field within it. Numerical simulations of forced stratified turbulence have been able to produce strong superequipartition flux concentrations, similar to sunspots at the solar surface. In this framework, sunspots would only form close to the surface due to the instability constraints on stratification and rotation. Additionally, we present some ideas from local helioseismology, where we plan to use the Hankel analysis to study the pre-emergence phase of a sunspot and to constrain its deep structure and formation mechanism. 
  •  
3.
  • Pastorello, A., et al. (författare)
  • The evolution of luminous red nova AT 2017jfs in NGC 4470
  • 2019
  • Ingår i: Astronomy and Astrophysics. - : EDP SCIENCES S A. - 0004-6361 .- 1432-0746. ; 625
  • Tidskriftsartikel (refereegranskat)abstract
    • We present the results of our photometric and spectroscopic follow-up of the intermediate-luminosity optical transient AT 2017jfs. At peak, the object reaches an absolute magnitude of M-g = 15.46 +/- 0.15 mag and a bolometric luminosity of 5.5 x 10(41) erg s(-1). Its light curve has the double-peak shape typical of luminous red novae (LRNe), with a narrow first peak bright in the blue bands, while the second peak is longer-lasting and more luminous in the red and near-infrared (NIR) bands. During the first peak, the spectrum shows a blue continuum with narrow emission lines of H and Fe II. During the second peak, the spectrum becomes cooler, resembling that of a K-type star, and the emission lines are replaced by a forest of narrow lines in absorption. About 5 months later, while the optical light curves are characterized by a fast linear decline, the NIR ones show a moderate rebrightening, observed until the transient disappears in solar conjunction. At these late epochs, the spectrum becomes reminiscent of that of M-type stars, with prominent molecular absorption bands. The late-time properties suggest the formation of some dust in the expanding common envelope or an IR echo from foreground pre-existing dust. We propose that the object is a common-envelope transient, possibly the outcome of a merging event in a massive binary, similar to NGC4490-2011OT1.
  •  
4.
  • Rivero Losada, Illa, et al. (författare)
  • Competition of rotation and stratification in flux concentrations
  • 2013
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 556
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. In a strongly stratified turbulent layer, a uniform horizontal magnetic field can become unstable and spontaneously form local flux concentrations due to a negative contribution of turbulence to the large-scale (mean-field) magnetic pressure. This mechanism, which is called negative effective magnetic pressure instability (NEMPI), is of interest in connection with dynamo scenarios in which most of the magnetic field resides in the bulk of the convection zone and not at the bottom, as is often assumed. Recent work using mean-field hydromagnetic equations has shown that NEMPI becomes suppressed at rather low rotation rates with Coriolis numbers as low as 0.1. Aims. Here we extend these earlier investigations by studying the effects of rotation both on the development of NEMPI and on the effective magnetic pressure. We also quantify the kinetic helicity resulting from direct numerical simulations (DNS) with Coriolis numbers and strengths of stratification comparable to values near the solar surface and compare it with earlier work at smaller scale separation ratios. Further, we estimate the expected observable signals of magnetic helicity at the solar surface. Methods. To calculate the rotational effect on the effective magnetic pressure we consider both DNS and analytical studies using the tau approach. To study the effects of rotation on the development of NEMPI we use both DNS and mean-field calculations of the three-dimensional hydromagnetic equations in a Cartesian domain. Results. We find that the growth rates of NEMPI from earlier mean-field calculations are well reproduced with DNS, provided the Coriolis number is below 0.06. In that case, kinetic and magnetic helicities are found to be weak and the rotational effect on the effective magnetic pressure is negligible as long as the production of flux concentrations is not inhibited by rotation. For faster rotation, dynamo action becomes possible. However, there is an intermediate range of rotation rates where dynamo action on its own is not yet possible, but the rotational suppression of NEMPI is being alleviated. Conclusions. Production of magnetic flux concentrations through the suppression of turbulent pressure appears to be possible only in the uppermost layers of the Sun, where the convective turnover time is less than two hours.
  •  
5.
  • Rivero Losada, Illa (författare)
  • Effects of rotation and stratification on magnetic flux concentrations
  • 2014
  • Licentiatavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • The formation of magnetic flux concentrations in the Sun is still a matter of debate. One observable manifestations of such concentrations is sunspots. A mechanism able to spontaneously form magnetic flux concentrations in strongly stratified hydromagnetic turbulence and in the presence of a weak magnetic field is the negative effective magnetic pressure instability (NEMPI). This instability is caused by the local suppression of the turbulence by the magnetic field. Due to the complexity of the system, and in order to understand the fundamental physics behind the instability, the study started by considering simplified conditions. In this thesis we aim to move towards the complexity of the Sun. Here we want to know whether the instability can develop under rotation and in the case of a polytropic stratification instead of the simpler isothermal stratification. We perform different kinds of simulations, namely direct numerical simulations (DNS)and mean field simulations (MFS) of strongly stratified turbulence in the presence of weak magnetic fields. We then study separately the effects of rotation and the change in stratification.It is found that slow rotation can suppress the instability. For Coriolis numbers larger than $0.1$ the MFS no longer result in growth, whereas the DNS start first with adecreaseof the growth rate of the instability % with the speed-up of rotation is alleviated and then, for $\Co > 0.06$, an increase owing to the fact that rotation leads to  the onset of the dynamo instability, which couples with NEMPI in a combined system. In fact, the suppression implies a constraint on the depth where the instability can operate in the Sun. Since rotation is very weak in the uppermost layers of the Sun, the formation of the flux concentration through this instability might be a shallow phenomenon. The same constraint is found when we study the effects of polytropic stratificationon NEMPI. In this case, the instability also develops, but it is much more concentrated in the upper parts of the simulation domain than in the isothermal case. In contrast to the isothermal case, where the density scale height is constant inthe computational domain, polytropic layers decrease their stratification deeper down, so it becomes harder for NEMPI to operate.With these studies we confirm that NEMPI can form magnetic flux concentrations even in the presence of weak rotation and for polytropic stratification. When applied to the Sun, the effects of rotation and the change of stratification constrain the depth where NEMPI can develop to the uppermost layers, where the rotational influence is weak and the stratification is strong enough.
  •  
6.
  • Rivero Losada, Illa, 1981- (författare)
  • Formation of solar bipolar regions : Magnetic flux concentrations from suction of the negative effective magnetic pressure instability
  • 2018
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Sunspots stand out on the visible solar surface. They appear as dark structures evolving and changing over time. They host energetic and violent events, like coronal mass ejections and flares, and concentrate strong magnetic fields. Hundreds of years of studies provide a record of sunspot cycles, as reported by the well-known butterfly diagram, as well as some of their general observational properties, such as size, maximum field strength, and lifetime. However, we lack a general theory that explains how the magnetic field cluster in the spots and how it evolves over time.This thesis studies the negative effective magnetic pressure instability (NEMPI) as a mechanism able to form such magnetic flux concentrations and thus magnetic spots. A weak magnetic field suppresses the turbulence locally and reduces the turbulent pressure. The resulting contraction concentrates the field further, which reduces the turbulent pressure even more, and so on. We study the conditions where NEMPI is excited, trying to reproduce some of the complexities of the solar environment. We focus on the effects of rotation, the change of stratification, and the influence of a simplified corona. We solve the magnetohydrodynamic equations using both direct numerical simulations and mean-field simulations of strongly stratified turbulence in a weak magnetic field.Even slow rotation with a Coriolis number of 0.01 can suppress the instability. Higher values of rotation lead to dynamo action, increasing the magnetic field in a new coupled dynamo-NEMPI system. In the solar case, the dependence of NEMPI on rotation constrains the depth where the instability can operate: since the Coriolis number is very small in the uppermost layers of the Sun, NEMPI can only be a shallow phenomenon. Changing the type of stratification from isothermal to polytropic pushes the instability further to the upper parts of the computational domain. Unlike the isothermal case, in the polytropic cases the density scale height is no longer constant, but the stratification decreases deeper down, making it increasingly difficult for NEMPI to operate.A corona changes dramatically the semblance of flux concentrations. A bipolar region is formed, instead of a single spot. It develops at the interface between the turbulent and the non-turbulent layers, forming a loop-like structure in the coronal layer. The bipoles move apart and finally decay and disappear. We study the structure in a wide range of parameters and test the physical conditions of its appearance. Higher stratification and imposed field strength intensify the magnetic structures, which reach even equipartition values, until a plateau and subsequent decrease occur. The increase of the domain size strengthens the maximum magnetic field and gives more coherence to the spots, keeping their sizes. We measure a strong large-scale downward and converging flows associated with the concentration of flux. Finally, we also include rotation in the two-layer model, confirming the previous results: slow rotation suppresses the formation of bipolar regions. A stronger imposed magnetic field alleviates the suppression somewhat and strengthens the structures.These studies demonstrate the viability of NEMPI to form magnetic flux concentrations in both monopolar and bipolar structures. We find that NEMPI can only develop in the uppermost layers, where the local Coriolis number is small and the stratification strong.
  •  
7.
  • Rivero Losada, Illa, et al. (författare)
  • Magnetic bipoles in rotating turbulence with coronal envelope
  • 2019
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 621
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. The formation mechanism of sunspots and starspots is not yet fully understood. It is a major open problem in astrophysics.Aims. Magnetic flux concentrations can be produced by the negative effective magnetic pressure instability (NEMPI). This instability is strongly suppressed by rotation. However, the presence of an outer coronal envelope was previously found to strengthen the flux concentrations and make them more prominent. It also allows for the formation of bipolar regions (BRs). We aim to understand the important issue of whether the presence of an outer coronal envelope also changes the excitation conditions and the rotational dependence of NEMPI.Methods. We have used direct numerical simulations and mean-field simulations. We adopted a simple two-layer model of turbulence that mimics the jump between the convective turbulent and coronal layers below and above the surface of a star, respectively. The computational domain is Cartesian and located at a certain latitude of a rotating sphere. We investigated the effects of rotation on NEMPI by changing the Coriolis number, the latitude, the strengths of the imposed magnetic field, and the box resolution.Results. Rotation has a strong impact on the process of BR formation. Even rather slow rotation is found to suppress BR formation. However, increasing the imposed magnetic field strength also makes the structures stronger and alleviates the rotational suppression somewhat. The presence of a coronal layer itself does not significantly reduce the effects of rotational suppression.
  •  
8.
  • Rivero Losada, Illa, et al. (författare)
  • Magnetic flux concentrations in a polytropic atmosphere
  • 2014
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 564
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. Strongly stratified hydromagnetic turbulence has recently been identified as a candidate for explaining the spontaneous formation of magnetic flux concentrations by the negative effective magnetic pressure instability (NEMPI). Much of this work has been done for isothermal layers, in which the density scale height is constant throughout. Aims. We now want to know whether earlier conclusions regarding the size of magnetic structures and their growth rates carry over to the case of polytropic layers, in which the scale height decreases sharply as one approaches the surface. Methods. To allow for a continuous transition from isothermal to poly tropic layers, we employ a generalization of the exponential function known as the q-exponential. This implies that the top of the polytropic layer shifts with changing polytropic index such that the scale height is always the same at some reference height. We used both mean-field simulations (MPS) and direct numerical simulations (DNS) of forced stratified turbulence to determine the resulting flux concentrations in polytropic layers. Cases of both horizontal and vertical applied magnetic fields were considered. Results. Magnetic structures begin to form at a depth where the magnetic field strength is a small fraction of the local equipartition field strength with respect to the turbulent kinetic energy. Unlike the isothermal case where stronger fields can give rise to magnetic flux concentrations at larger depths, in the polytropic case the growth rate of NEMPI decreases for structures deeper down. Moreover, the structures that form higher up have a smaller horizontal scale of about four times their local depth. For vertical fields, magnetic structures of super-equipartition strengths are formed, because such fields survive downward advection that causes NEMPI with horizontal magnetic fields to reach premature nonlinear saturation by what is called the potato-sack effect. The horizontal cross-section of such structures found in DNS is approximately circular, which is reproduced with MFS of NEMPI using a vertical magnetic field. Conclusions. Results based on isothermal models can be applied locally to polytropic layers. For vertical fields, magnetic flux concentrations of super-equipartition strengths form, which supports suggestions that sunspot formation might be a shallow phenomenon.
  •  
9.
  • Rivero Losada, Illa, et al. (författare)
  • Rotational effects on the negative magnetic pressure instability
  • 2012
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 548
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. The surface layers of the Sun are strongly stratified. In the presence of turbulence with a weak mean magnetic field, a large-scale instability resulting in the formation of nonuniform magnetic structures, can be excited on the scale of many (more than ten) turbulent eddies (or convection cells). This instability is caused by a negative contribution of turbulence to the effective (mean-field) magnetic pressure and has previously been discussed in connection with the formation of active regions. Aims. We want to understand the effects of rotation on this instability in both two and three dimensions. Methods. We use mean-field magnetohydrodynamics in a parameter regime in which the properties of the negative effective magnetic pressure instability have previously been found to agree with properties of direct numerical simulations. Results. We find that the instability is already suppressed for relatively slow rotation with Coriolis numbers (i.e. inverse Rossby numbers) around 0.2. The suppression is strongest at the equator. In the nonlinear regime, we find traveling wave solutions with propagation in the prograde direction at the equator with additional poleward migration away from the equator. Conclusions. We speculate that the prograde rotation of the magnetic pattern near the equator might be a possible explanation for the faster rotation speed of magnetic tracers relative to the plasma velocity on the Sun. In the bulk of the domain, kinetic and current helicities are negative in the northern hemisphere and positive in the southern.
  •  
10.
  • Warnecke, Jörn, et al. (författare)
  • Bipolar Magnetic Structures Driven by Stratified Turbulence with a Coronal Envelope
  • 2013
  • Ingår i: Astrophysical Journal Letters. - 2041-8205 .- 2041-8213. ; 777:2
  • Tidskriftsartikel (refereegranskat)abstract
    • We report the spontaneous formation of bipolar magnetic structures in direct numerical simulations of stratified forced turbulence with an outer coronal envelope. The turbulence is forced with transverse random waves only in the lower (turbulent) part of the domain. Our initial magnetic field is either uniform in the entire domain or confined to the turbulent layer. After about 1-2 turbulent diffusion times, a bipolar magnetic region of vertical field develops with two coherent circular structures that live during one turbulent diffusion time, and then decay during 0.5 turbulent diffusion times. The resulting magnetic field strengths inside the bipolar region are comparable to the equipartition value with respect to the turbulent kinetic energy. The bipolar magnetic region forms a loop-like structure in the upper coronal layer. We associate the magnetic structure formation with the negative effective magnetic pressure instability in the two-layer model.
  •  
11.
  • Warnecke, Jörn, et al. (författare)
  • Bipolar region formation in stratified two-layer turbulence
  • 2016
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 589
  • Tidskriftsartikel (refereegranskat)abstract
    • Aims. This work presents an extensive study of the previously discovered formation of bipolar flux concentrations in a two-layer model. We interpret the formation process in terms of negative effective magnetic pressure instability (NEMPI), which is a possible mechanism to explain the origin of sunspots. Methods. In our simulations, we use a Cartesian domain of isothermal stratified gas that is divided into two layers. In the lower layer, turbulence is forced with transverse nonhelical random waves, whereas in the upper layer no flow is induced. A weak uniform magnetic field is imposed in the entire domain at all times. In most cases, it is horizontal, but a vertical and an inclined field are also considered. In this study we vary the stratification by changing the gravitational acceleration, magnetic Reynolds number, strength of the imposed magnetic field, and size of the domain to investigate their influence on the formation process. Results. Bipolar magnetic structure formation takes place over a large range of parameters. The magnetic structures become more intense for higher stratification until the density contrast becomes around 100 across the turbulent layer. For the fluid Reynolds numbers considered, magnetic flux concentrations are generated at magnetic Prandtl number between 0.1 and 1. The magnetic field in bipolar regions increases with higher imposed field strength until the field becomes comparable to the equipartition field strength of the turbulence. A larger horizontal extent enables the flux concentrations to become stronger and more coherent. The size of the bipolar structures turns out to be independent of the domain size. A small imposed horizontal field component is necessary to generate bipolar structures. In the case of bipolar region formation, we find an exponential growth of the large-scale magnetic field, which is indicative of a hydromagnetic instability. Additionally, the flux concentrations are correlated with strong large-scale downward and converging flows. These findings imply that NEMPI is responsible for magnetic flux concentrations.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-11 av 11

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy