SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Luoto M.) srt2:(2020-2024)"

Search: WFRF:(Luoto M.) > (2020-2024)

  • Result 1-19 of 19
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Berner, Logan T., et al. (author)
  • The Arctic plant aboveground biomass synthesis dataset
  • 2024
  • In: Scientific Data. - : Springer Nature. - 2052-4463. ; 11:1
  • Journal article (peer-reviewed)abstract
    • Plant biomass is a fundamental ecosystem attribute that is sensitive to rapid climatic changes occurring in the Arctic. Nevertheless, measuring plant biomass in the Arctic is logistically challenging and resource intensive. Lack of accessible field data hinders efforts to understand the amount, composition, distribution, and changes in plant biomass in these northern ecosystems. Here, we present The Arctic plant aboveground biomass synthesis dataset, which includes field measurements of lichen, bryophyte, herb, shrub, and/or tree aboveground biomass (g m−2) on 2,327 sample plots from 636 field sites in seven countries. We created the synthesis dataset by assembling and harmonizing 32 individual datasets. Aboveground biomass was primarily quantified by harvesting sample plots during mid- to late-summer, though tree and often tall shrub biomass were quantified using surveys and allometric models. Each biomass measurement is associated with metadata including sample date, location, method, data source, and other information. This unique dataset can be leveraged to monitor, map, and model plant biomass across the rapidly warming Arctic.
  •  
2.
  • Criado, M. G., et al. (author)
  • Plant traits poorly predict winner and loser shrub species in a warming tundra biome
  • 2023
  • In: Nature Communications. - 2041-1723. ; 14:1
  • Journal article (peer-reviewed)abstract
    • Climate change is leading to species redistributions. In the tundra biome, shrubs are generally expanding, but not all tundra shrub species will benefit from warming. Winner and loser species, and the characteristics that may determine success or failure, have not yet been fully identified. Here, we investigate whether past abundance changes, current range sizes and projected range shifts derived from species distribution models are related to plant trait values and intraspecific trait variation. We combined 17,921 trait records with observed past and modelled future distributions from 62 tundra shrub species across three continents. We found that species with greater variation in seed mass and specific leaf area had larger projected range shifts, and projected winner species had greater seed mass values. However, trait values and variation were not consistently related to current and projected ranges, nor to past abundance change. Overall, our findings indicate that abundance change and range shifts will not lead to directional modifications in shrub trait composition, since winner and loser species share relatively similar trait spaces. Functional trait data could guide predictions of species responses to environmental change. Here, the authors show that winner and loser shrub species in the warming tundra biome overlap in trait space and may therefore be difficult to predict based on commonly measured traits.
  •  
3.
  • Graco-Roza, Caio, et al. (author)
  • Distance decay 2.0 – A global synthesis of taxonomic and functional turnover in ecological communities
  • 2022
  • In: Global Ecology and Biogeography. - : Wiley. - 1466-822X .- 1466-8238. ; 31:7, s. 1399-1421
  • Journal article (peer-reviewed)abstract
    • Aim: Understanding the variation in community composition and species abundances (i.e., beta-diversity) is at the heart of community ecology. A common approach to examine beta-diversity is to evaluate directional variation in community composition by measuring the decay in the similarity among pairs of communities along spatial or environmental distance. We provide the first global synthesis of taxonomic and functional distance decay along spatial and environmental distance by analysing 148 datasets comprising different types of organisms and environments.Location: Global.Time period: 1990 to present.Major taxa studied: From diatoms to mammals.Method: We measured the strength of the decay using ranked Mantel tests (Mantel r) and the rate of distance decay as the slope of an exponential fit using generalized linear models. We used null models to test whether functional similarity decays faster or slower than expected given the taxonomic decay along the spatial and environmental distance. We also unveiled the factors driving the rate of decay across the datasets, including latitude, spatial extent, realm and organismal features.Results: Taxonomic distance decay was stronger than functional distance decay along both spatial and environmental distance. Functional distance decay was random given the taxonomic distance decay. The rate of taxonomic and functional spatial distance decay was fastest in the datasets from mid-latitudes. Overall, datasets covering larger spatial extents showed a lower rate of decay along spatial distance but a higher rate of decay along environmental distance. Marine ecosystems had the slowest rate of decay along environmental distances.Main conclusions: In general, taxonomic distance decay is a useful tool for biogeographical research because it reflects dispersal-related factors in addition to species responses to climatic and environmental variables. Moreover, functional distance decay might be a cost-effective option for investigating community changes in heterogeneous environments.
  •  
4.
  • Lembrechts, Jonas J., et al. (author)
  • SoilTemp : A global database of near-surface temperature
  • 2020
  • In: Global Change Biology. - : Wiley. - 1354-1013 .- 1365-2486. ; 26:11, s. 6616-6629
  • Journal article (peer-reviewed)abstract
    • Current analyses and predictions of spatially explicit patterns and processes in ecology most often rely on climate data interpolated from standardized weather stations. This interpolated climate data represents long-term average thermal conditions at coarse spatial resolutions only. Hence, many climate-forcing factors that operate at fine spatiotemporal resolutions are overlooked. This is particularly important in relation to effects of observation height (e.g. vegetation, snow and soil characteristics) and in habitats varying in their exposure to radiation, moisture and wind (e.g. topography, radiative forcing or cold-air pooling). Since organisms living close to the ground relate more strongly to these microclimatic conditions than to free-air temperatures, microclimatic ground and near-surface data are needed to provide realistic forecasts of the fate of such organisms under anthropogenic climate change, as well as of the functioning of the ecosystems they live in. To fill this critical gap, we highlight a call for temperature time series submissions to SoilTemp, a geospatial database initiative compiling soil and near-surface temperature data from all over the world. Currently, this database contains time series from 7,538 temperature sensors from 51 countries across all key biomes. The database will pave the way toward an improved global understanding of microclimate and bridge the gap between the available climate data and the climate at fine spatiotemporal resolutions relevant to most organisms and ecosystem processes.
  •  
5.
  • Picetti, Edoardo, et al. (author)
  • Early management of adult traumatic spinal cord injury in patients with polytrauma : a consensus and clinical recommendations jointly developed by the World Society of Emergency Surgery (WSES) & the European Association of Neurosurgical Societies (EANS)
  • 2024
  • In: World Journal of Emergency Surgery. - : BioMed Central (BMC). - 1749-7922. ; 19
  • Journal article (peer-reviewed)abstract
    • Background: The early management of polytrauma patients with traumatic spinal cord injury (tSCI) is a major challenge. Sparse data is available to provide optimal care in this scenario and worldwide variability in clinical practice has been documented in recent studies.Methods: A multidisciplinary consensus panel of physicians selected for their established clinical and scientific expertise in the acute management of tSCI polytrauma patients with different specializations was established. The World Society of Emergency Surgery (WSES) and the European Association of Neurosurgical Societies (EANS) endorsed the consensus, and a modified Delphi approach was adopted.Results: A total of 17 statements were proposed and discussed. A consensus was reached generating 17 recommendations (16 strong and 1 weak).Conclusions: This consensus provides practical recommendations to support a clinician's decision making in the management of tSCI polytrauma patients.
  •  
6.
  • Lembrechts, Jonas J., et al. (author)
  • Global maps of soil temperature
  • 2022
  • In: Global Change Biology. - : Wiley. - 1354-1013 .- 1365-2486. ; 28:9, s. 3110-3144
  • Journal article (peer-reviewed)abstract
    • Research in global change ecology relies heavily on global climatic grids derived from estimates of air temperature in open areas at around 2m above the ground. These climatic grids do not reflect conditions below vegetation canopies and near the ground surface, where critical ecosystem functions occur and most terrestrial species reside. Here, we provide global maps of soil temperature and bioclimatic variables at a 1-km2 resolution for 0–5 and 5–15cm soil depth. These maps were created by calculating the difference (i.e. offset) between in situ soil temperature measurements, based on time series from over 1200 1-km2 pixels (summarized from 8519 unique temperature sensors) across all the world's major terrestrial biomes, and coarse-grained air temperature estimates from ERA5-Land (an atmospheric reanalysis by the European Centre for Medium-Range Weather Forecasts). We show that mean annual soil temperature differs markedly from the corresponding gridded air temperature, by up to 10°C (mean=3.0±2.1°C), with substantial variation across biomes and seasons. Over the year, soils in cold and/or dry biomes are substantially warmer (+3.6±2.3°C) than gridded air temperature, whereas soils in warm and humid environments are on average slightly cooler (−0.7±2.3°C). The observed substantial and biome-specific offsets emphasize that the projected impacts of climate and climate change on near-surface biodiversity and ecosystem functioning are inaccurately assessed when air rather than soil temperature is used, especially in cold environments. The global soil-related bioclimatic variables provided here are an important step forward for any application in ecology and related disciplines. Nevertheless, we highlight the need to fill remaining geographic gaps by collecting more in situ measurements of microclimate conditions to further enhance the spatiotemporal resolution of global soil temperature products for ecological applications.
  •  
7.
  •  
8.
  • Marttila, S, et al. (author)
  • Methylation status of VTRNA2-1/nc886 is stable across populations, monozygotic twin pairs and in majority of tissues
  • 2022
  • In: Epigenomics. - : Future Medicine Ltd. - 1750-192X .- 1750-1911. ; 14:18, s. 1105-1124
  • Journal article (peer-reviewed)abstract
    • Aims & methods: The aim of this study was to characterize the methylation level of a polymorphically imprinted gene, VTRNA2-1/ nc886, in human populations and somatic tissues.48 datasets, consisting of more than 30 tissues and >30,000 individuals, were used. Results: nc886 methylation status is associated with twin status and ethnic background, but the variation between populations is limited. Monozygotic twin pairs present concordant methylation, whereas ∼30% of dizygotic twin pairs present discordant methylation in the nc886 locus. The methylation levels of nc886 are uniform across somatic tissues, except in cerebellum and skeletal muscle. Conclusion: The nc886 imprint may be established in the oocyte, and, after implantation, the methylation status is stable, excluding a few specific tissues.
  •  
9.
  • Posti, J. P., et al. (author)
  • Admission Levels of Interleukin 10 and Amyloid beta 1-40 Improve the Outcome Prediction Performance of the Helsinki Computed Tomography Score in Traumatic Brain Injury
  • 2020
  • In: Frontiers in Neurology. - : Frontiers Media SA. - 1664-2295. ; 11
  • Journal article (peer-reviewed)abstract
    • Background: Blood biomarkers may enhance outcome prediction performance of head computed tomography scores in traumatic brain injury (TBI). Objective: To investigate whether admission levels of eight different protein biomarkers can improve the outcome prediction performance of the Helsinki computed tomography score (HCTS) without clinical covariates in TBI. Materials and methods: Eighty-two patients with computed tomography positive TBIs were included in this study. Plasma levels of beta-amyloid isoforms 1-40 (A beta 40) and 1-42 (A beta 42), glial fibrillary acidic protein, heart fatty acid-binding protein, interleukin 10 (IL-10), neurofilament light, S100 calcium-binding protein B, and total tau were measured within 24 h from admission. The patients were divided into favorable (Glasgow Outcome Scale-Extended 5-8, n = 49) and unfavorable (Glasgow Outcome Scale-Extended 1-4, n = 33) groups. The outcome was assessed 6-12 months after injury. An optimal predictive panel was investigated with the sensitivity set at 90-100%. Results: The HCTS alone yielded a sensitivity of 97.0% (95% CI: 90.9-100) and specificity of 22.4% (95% CI: 10.2-32.7) and partial area under the curve of the receiver operating characteristic of 2.5% (95% CI: 1.1-4.7), in discriminating patients with favorable and unfavorable outcomes. The threshold to detect a patient with unfavorable outcome was an HCTS > 1. The three best individually performing biomarkers in outcome prediction were A beta 40, A beta 42, and neurofilament light. The optimal panel included IL-10, A beta 40, and the HCTS reaching a partial area under the curve of the receiver operating characteristic of 3.4% (95% CI: 1.7-6.2) with a sensitivity of 90.9% (95% CI: 81.8-100) and specificity of 59.2% (95% CI: 40.8-69.4). Conclusion: Admission plasma levels of IL-10 and A beta 40 significantly improve the prognostication ability of the HCTS after TBI.
  •  
10.
  • Huebschmann, Nathan A, et al. (author)
  • Comparing Glial Fibrillary Acidic Protein (GFAP) in Serum and Plasma Following Mild Traumatic Brain Injury in Older Adults.
  • 2020
  • In: Frontiers in neurology. - : Frontiers Media SA. - 1664-2295. ; 11
  • Journal article (peer-reviewed)abstract
    • Objective: Identification and validation of blood-based biomarkers for the diagnosis and prognosis of mild traumatic brain injury (mTBI) is of critical importance. There have been calls for more research on mTBI in older adults. We compared blood-based protein marker glial fibrillary acidic protein (GFAP) concentrations in serum and in plasma within the same cohort of older adults and assessed their ability to discriminate between individuals based on intracranial abnormalities and functional outcome following mTBI. Methods: A sample of 121 older adults [≥50 years old with head computed tomography (CT), n = 92] seeking medical care for a head injury [Glasgow Coma Scale scores of 14 (n = 6; 5.0%) or 15 (n = 115; 95.0%)] were enrolled from the emergency department (ED). The mean time between injury and blood sampling was 3.4 h (SD = 2.1; range = 0.5-11.7). Serum GFAP concentration was measured first using the Human Neurology 4-Plex Assay, while plasma GFAP concentration was later measured using the GFAP Discovery Kit, both on an HD-1 Single molecule array (Simoa) instrument. Glasgow Outcome Scale-Extended was assessed 1 week after injury. Results: Both serum and plasma GFAP levels were significantly higher in those with abnormal CT scans compared to those with normal head CT scans (plasma: U = 1,198, p < 0.001; serum: U = 1,253, p < 0.001). The ability to discriminate those with and without intracranial abnormalities was comparable between serum (AUC = 0.814) and plasma (AUC = 0.778). In the total sample, GFAP concentrations were considerably higher in plasma than in serum (Wilcoxon signed-rank test z = 0.42, p < 0.001, r = 0.42). Serum and plasma GFAP levels were highly correlated in the total sample and within all subgroups (Spearman's rho range: 0.826-0.907). Both serum and plasma GFAP levels were significantly higher in those with poor compared to good functional outcome (serum: U = 1,625, p = 0.002; plasma: U = 1,539, p = 0.013). Neither plasma (AUC = 0.653) nor serum (AUC = 0.690) GFAP were adequate predictors of functional outcome 1 week after injury. Conclusions: Despite differences in concentration, serum and plasma GFAP levels were highly correlated and had similar discriminability between those with and without intracranial abnormalities on head CT following an mTBI. Neither serum nor plasma GFAP had adequate discriminability to identify patients who would have poor functional outcome.
  •  
11.
  • Virkkala, Anna Maria, et al. (author)
  • Statistical upscaling of ecosystem CO2 fluxes across the terrestrial tundra and boreal domain : Regional patterns and uncertainties
  • 2021
  • In: Global Change Biology. - : Wiley. - 1354-1013 .- 1365-2486. ; 27:17, s. 4040-4059
  • Journal article (peer-reviewed)abstract
    • The regional variability in tundra and boreal carbon dioxide (CO2) fluxes can be high, complicating efforts to quantify sink-source patterns across the entire region. Statistical models are increasingly used to predict (i.e., upscale) CO2 fluxes across large spatial domains, but the reliability of different modeling techniques, each with different specifications and assumptions, has not been assessed in detail. Here, we compile eddy covariance and chamber measurements of annual and growing season CO2 fluxes of gross primary productivity (GPP), ecosystem respiration (ER), and net ecosystem exchange (NEE) during 1990–2015 from 148 terrestrial high-latitude (i.e., tundra and boreal) sites to analyze the spatial patterns and drivers of CO2 fluxes and test the accuracy and uncertainty of different statistical models. CO2 fluxes were upscaled at relatively high spatial resolution (1 km2) across the high-latitude region using five commonly used statistical models and their ensemble, that is, the median of all five models, using climatic, vegetation, and soil predictors. We found the performance of machine learning and ensemble predictions to outperform traditional regression methods. We also found the predictive performance of NEE-focused models to be low, relative to models predicting GPP and ER. Our data compilation and ensemble predictions showed that CO2 sink strength was larger in the boreal biome (observed and predicted average annual NEE −46 and −29 g C m−2 yr−1, respectively) compared to tundra (average annual NEE +10 and −2 g C m−2 yr−1). This pattern was associated with large spatial variability, reflecting local heterogeneity in soil organic carbon stocks, climate, and vegetation productivity. The terrestrial ecosystem CO2 budget, estimated using the annual NEE ensemble prediction, suggests the high-latitude region was on average an annual CO2 sink during 1990–2015, although uncertainty remains high.
  •  
12.
  • Bastola, K, et al. (author)
  • Pregnancy complications in women of Russian, Somali, and Kurdish origin and women in the general population in Finland
  • 2020
  • In: Women's health (London, England). - : SAGE Publications. - 1745-5065. ; 16, s. 1745506520910911-
  • Journal article (peer-reviewed)abstract
    • We compared the prevalence of gestational diabetes and hypertensive disorders in the most recent pregnancy among women of Russian, Somali, and Kurdish origin and women in the general population in Finland. Methods: The study groups were selected from population-based samples of 18- to 64-year-old women. The women were of Russian (n = 318), Somali (n = 583), and Kurdish (n = 373) origin or from the general population (n = 243), and had given birth in Finland between 2004 and 2014. The data were obtained from the National Medical Birth Register and the Hospital Discharge Register. Data on gestational diabetes and hypertensive disorders were extracted based on relevant International Classification of Diseases, Tenth Revision codes. The main statistical methods were logistic regression analyses adjusted for age, parity, body mass index, socioeconomic status, and smoking. Results: The prevalence of gestational diabetes was 19.1% in Kurdish, 14.4% in Somali, 9.3% in Russian, and 11.8% in the general population. The prevalence of hypertensive disorders was 5.4% in the general population, 3.8% in Somali, 3.1% in Kurdish, and 1.7% in Russian. When adjusted for confounders, Kurdish women had two-fold odds for gestational diabetes (odds ratio = 1.98; 95% confidence interval = 1.20–3.32) compared with the general population, but the odds for hypertensive disorders did not differ between groups. Conclusion: Women of Kurdish origin were more likely to develop gestational diabetes. Studies with larger samples are required to confirm these findings to develop prevention strategies for later development of type 2 diabetes. Future research including other migrant groups is recommended to identify differences in pregnancy complications among the women in migrant and general population.
  •  
13.
  • De Frenne, Pieter, et al. (author)
  • Forest microclimates and climate change : Importance, drivers and future research agenda
  • 2021
  • In: Global Change Biology. - : Wiley. - 1354-1013 .- 1365-2486. ; 27:11, s. 2279-2297
  • Research review (peer-reviewed)abstract
    • Forest microclimates contrast strongly with the climate outside forests. To fully understand and better predict how forests' biodiversity and functions relate to climate and climate change, microclimates need to be integrated into ecological research. Despite the potentially broad impact of microclimates on the response of forest ecosystems to global change, our understanding of how microclimates within and below tree canopies modulate biotic responses to global change at the species, community and ecosystem level is still limited. Here, we review how spatial and temporal variation in forest microclimates result from an interplay of forest features, local water balance, topography and landscape composition. We first stress and exemplify the importance of considering forest microclimates to understand variation in biodiversity and ecosystem functions across forest landscapes. Next, we explain how macroclimate warming (of the free atmosphere) can affect microclimates, and vice versa, via interactions with land-use changes across different biomes. Finally, we perform a priority ranking of future research avenues at the interface of microclimate ecology and global change biology, with a specific focus on three key themes: (1) disentangling the abiotic and biotic drivers and feedbacks of forest microclimates; (2) global and regional mapping and predictions of forest microclimates; and (3) the impacts of microclimate on forest biodiversity and ecosystem functioning in the face of climate change. The availability of microclimatic data will significantly increase in the coming decades, characterizing climate variability at unprecedented spatial and temporal scales relevant to biological processes in forests. This will revolutionize our understanding of the dynamics, drivers and implications of forest microclimates on biodiversity and ecological functions, and the impacts of global changes. In order to support the sustainable use of forests and to secure their biodiversity and ecosystem services for future generations, microclimates cannot be ignored.
  •  
14.
  • Iverson, Grant L, et al. (author)
  • Examining four blood biomarkers for the detection of acute intracranial abnormalities following mild traumatic brain injury in older adults.
  • 2022
  • In: Frontiers in neurology. - : Frontiers Media SA. - 1664-2295. ; 13
  • Journal article (peer-reviewed)abstract
    • Blood-based biomarkers have been increasingly studied for diagnostic and prognostic purposes in patients with mild traumatic brain injury (MTBI). Biomarker levels in blood have been shown to vary throughout age groups. Our aim was to study four blood biomarkers, glial fibrillary acidic protein (GFAP), ubiquitin C-terminal hydrolase-L1 (UCH-L1), neurofilament light (NF-L), and total tau (t-tau), in older adult patients with MTBI. The study sample was collected in the emergency department in Tampere University Hospital, Finland, between November 2015 and November 2016. All consecutive adult patients with head injury were eligible for inclusion. Serum samples were collected from the enrolled patients, which were frozen and later sent for biomarker analyses. Patients aged 60 years or older with MTBI, head computed tomography (CT) imaging, and available biomarker levels were eligible for this study. A total of 83 patients (mean age = 79.0, SD = 9.58, range = 60-100; 41.0% men) were included in the analysis. GFAP was the only biomarker to show statistically significant differentiation between patients with and without acute head CT abnormalities [U(83) = 280, p < 0.001, r = 0.44; area under the curve (AUC) = 0.79, 95% CI = 0.67-0.91]. The median UCH-L1 values were modestly greater in the abnormal head CT group vs. normal head CT group [U (83) = 492, p = 0.065, r = 0.20; AUC = 0.63, 95% CI = 0.49-0.77]. Older age was associated with biomarker levels in the normal head CT group, with the most prominent age associations being with NF-L (r = 0.56) and GFAP (r = 0.54). The results support the use of GFAP in detecting abnormal head CT findings in older adults with MTBIs. However, small sample sizes run the risk for producing non-replicable findings that may not generalize to the population and do not translate well to clinical use. Further studies should consider the potential effect of age on biomarker levels when establishing clinical cut-off values for detecting head CT abnormalities.
  •  
15.
  • Iverson, G. L., et al. (author)
  • Reliability of serum S100B measurement following mild traumatic brain injury: a comparison of assay measurements from two laboratories
  • 2020
  • In: Brain Injury. - : Informa UK Limited. - 0269-9052 .- 1362-301X. ; 34:9, s. 1237-1244
  • Journal article (peer-reviewed)abstract
    • Objective There is enormous research and clinical interest in blood-based biomarkers of mild traumatic brain injury (MTBI) sustained in sports, daily life, or military service. We examined the reliability of a commercially available assay for S100B used on the same samples by two different laboratories separated by 2 years in time. Methods and Procedures A cohort of 163 adult patients (head CT-scanned, n = 110) with mild head injury were enrolled from the emergency department (ED). All had Glasgow Coma Scale scores of 14 or 15 in the ED (94.4% = 15). The mean time between injury and venous blood sampling was 2.9 h (SD = 1.4; Range = 0.5-6.0 h). Serum S100B was measured at two independent centers using the same high throughput clinical assay (Elecsys S100B (R); Roche Diagnostics). Results The Spearman correlation between the two assays in the total sample (N = 163) was r = 0.93. A Wilcoxson Signed Ranks test indicated that the median scores for the values differed (Z = 2,082,p< .001, Cohen's d = 0.151, small effect size). The values obtained from the two laboratories were very similar for identifying traumatic intracranial abnormalities (sensitivity = 80.1% versus 85.7%). Conclusions The serum S100B results measured using the same assay in different laboratories yielded highly correlated and clinically similar, but clearly not identical, results.
  •  
16.
  • Kemppinen, J., et al. (author)
  • Geomorphological processes shape plant community traits in the Arctic
  • 2022
  • In: Global Ecology and Biogeography. - : Wiley. - 1466-822X .- 1466-8238. ; 31:7, s. 1381-1398
  • Journal article (peer-reviewed)abstract
    • Aim Geomorphological processes profoundly affect plant establishment and distributions, but their influence on functional traits is insufficiently understood. Here, we unveil trait-geomorphology relationships in Arctic plant communities. Location High-Arctic Svalbard, low-Arctic Greenland and sub-Arctic Fennoscandia. Time period 2011-2018. Major taxa studied Vascular plants. Methods We collected field-quantified data on vegetation, geomorphological processes, microclimate and soil properties from 5,280 plots and 200 species across the three Arctic regions. We combined these data with database trait records to relate local plant community trait composition to dominant geomorphological processes of the Arctic, namely cryoturbation, deflation, fluvial processes and solifluction. We investigated the relationship between plant functional traits and geomorphological processes using hierarchical generalized additive modelling. Results Our results demonstrate that community-level traits are related to geomorphological processes, with cryoturbation most strongly influencing both structural and leaf economic traits. These results were consistent across regions, suggesting a coherent biome-level trait response to geomorphological processes. Main conclusions The results indicate that geomorphological processes shape plant community traits in the Arctic. We provide empirical evidence for the existence of generalizable relationships between plant functional traits and geomorphological processes. The results indicate that the relationships are consistent across these three distinct tundra regions and that geomorphological processes should be considered in future investigations of functional traits.
  •  
17.
  • Keski-Pukkila, Mira, et al. (author)
  • Preliminary Evaluation of the Scandinavian Guidelines for Initial Management of Minimal, Mild, and Moderate Head Injuries with Glial Fibrillary Acidic Protein
  • 2024
  • In: NEUROTRAUMA REPORTS. - 2689-288X. ; 5:1, s. 50-60
  • Journal article (peer-reviewed)abstract
    • Glial fibrillary acidic protein (GFAP) has become the most promising biomarker for detecting traumatic abnormalities on head computed tomography (CT) in patients with traumatic brain injury (TBI), but most studies have not addressed the potential added value of combining the biomarker with clinical variables that confer risk for intracranial injuries. The Scandinavian Guidelines for Initial Management of Minimal, Mild, and Moderate Head Injuries in Adults were the first clinical decision rules in the field with an incorporated biomarker, the S100 astroglial calcium-binding protein B (S100B), which is used in the Mild (Low Risk) group defined by the guidelines. Our aim was to evaluate the performance of the guidelines when S100B was substituted with GFAP. The sample (N = 296) was recruited from the Tampere University Hospital's emergency department between November 2015 and November 2016, and there were 49 patients with available GFAP results who were stratified in the Mild (Low Risk) group (thus patients undergoing biomarker triaging). A previously reported cutoff of plasma GFAP >= 140 pg/mL was used. Within the Mild (Low Risk) group (n = 49), GFAP sensitivity (with 95% confidence intervals in parentheses) for detecting traumatic CT abnormalities was 1.0 (0.40-1.00), specificity 0.34 (0.19-0.53), the negative predictive value (NPV) 1.0 (0.68-1.00), and the positive predictive value (PPV) 0.16 (0.05-0.37). The sensitivity and specificity of the modified guidelines with GFAP, when applied to all imaged patients (n = 197) in the whole sample, were 0.94 (0.77-0.99) and 0.20 (0.15-0.28), respectively. NPV was 0.94 (0.80-0.99) and PPV 0.18 (0.13-0.25). In the Mild (Low Risk) group, none of the patients with GFAP results below 140 pg/mL had traumatic abnormalities on their head CT. These findings were derived from a small patient subgroup. Future researchers should replicate these findings in larger samples and assess whether GFAP has added or comparable value to S100B in acute TBI management.
  •  
18.
  • Raj, R, et al. (author)
  • Dynamic prediction of mortality after traumatic brain injury using a machine learning algorithm
  • 2022
  • In: NPJ digital medicine. - : Springer Science and Business Media LLC. - 2398-6352. ; 5:1, s. 96-
  • Journal article (peer-reviewed)abstract
    • Intensive care for patients with traumatic brain injury (TBI) aims to optimize intracranial pressure (ICP) and cerebral perfusion pressure (CPP). The transformation of ICP and CPP time-series data into a dynamic prediction model could aid clinicians to make more data-driven treatment decisions. We retrained and externally validated a machine learning model to dynamically predict the risk of mortality in patients with TBI. Retraining was done in 686 patients with 62,000 h of data and validation was done in two international cohorts including 638 patients with 60,000 h of data. The area under the receiver operating characteristic curve increased with time to 0.79 and 0.73 and the precision recall curve increased with time to 0.57 and 0.64 in the Swedish and American validation cohorts, respectively. The rate of false positives decreased to ≤2.5%. The algorithm provides dynamic mortality predictions during intensive care that improved with increasing data and may have a role as a clinical decision support tool.
  •  
19.
  • Tommiska, Pihla, et al. (author)
  • Finnish study of intraoperative irrigation versus drain alone after evacuation of chronic subdural haematoma (FINISH) : a study protocol for a multicentre randomised controlled trial
  • 2020
  • In: BMJ Open. - : BMJ. - 2044-6055. ; 10:6, s. 038275-038275
  • Journal article (peer-reviewed)abstract
    • INTRODUCTION: Chronic subdural haematomas (CSDHs) are one of the most common neurosurgical conditions. The goal of surgery is to alleviate symptoms and minimise the risk of symptomatic recurrences. In the past, reoperation rates as high as 20%-30% were described for CSDH recurrences. However, following the introduction of subdural drainage, reoperation rates dropped to approximately 10%. The standard surgical technique includes burr-hole craniostomy, followed by intraoperative irrigation and placement of subdural drainage. Yet, the role of intraoperative irrigation has not been established. If there is no difference in recurrence rates between intraoperative irrigation and no irrigation, CSDH surgery could be carried out faster and more safely by omitting the step of irrigation. The aim of this multicentre randomised controlled trial is to study whether no intraoperative irrigation and subdural drainage results in non-inferior outcome compared with intraoperative irrigation and subdural drainage following burr-hole craniostomy of CSDH. METHODS AND ANALYSIS: This is a prospective, randomised, controlled, parallel group, non-inferiority multicentre trial comparing single burr-hole evacuation of CSDH with intraoperative irrigation and evacuation of CSDH without irrigation. In both groups, a passive subdural drain is used for 48 hours as a standard of treatment. The primary outcome is symptomatic CSDH recurrence requiring reoperation within 6 months. The predefined non-inferiority margin for the primary outcome is 7.5%. To achieve a 2.5% level of significance and 80% power, we will randomise 270 patients per group. Secondary outcomes include modified Rankin Scale, rate of mortality, duration of operation, length of hospital stay, adverse events and change in volume of CSDH. ETHICS AND DISSEMINATION: The study was approved by the institutional review board of the Helsinki and Uusimaa Hospital District (HUS/3035/2019 §238) and duly registered at ClinicalTrials.gov. We will disseminate the findings of this study through peer-reviewed publications and conference presentations. TRIAL REGISTRATION NUMBER: NCT04203550.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-19 of 19
Type of publication
journal article (18)
research review (1)
Type of content
peer-reviewed (19)
Author/Editor
Luoto, Miska (6)
Blennow, Kaj, 1958 (5)
Zetterberg, Henrik, ... (5)
Aalto, Juha (4)
Hylander, Kristoffer (3)
De Frenne, Pieter (3)
show more...
Lenoir, Jonathan (3)
Luoto, R. (3)
Happonen, Konsta (3)
Dolezal, Jiri (3)
Lembrechts, Jonas J. (3)
Peters, A (2)
Natali, Susan M. (2)
Dorrepaal, Ellen (2)
Nilsson, Mats (2)
Peichl, Matthias (2)
Tagesson, Torbern (2)
Ardö, Jonas (2)
Luostarinen, T (2)
Merinero, Sonia (2)
Waldenberger, M. (2)
Raitakari, O. (2)
Larson, Keith (2)
Raitanen, J (2)
Alatalo, Juha M. (2)
Heikkinen, A (2)
Kananen, L (2)
Boeckx, Pascal (2)
Björk, Robert G., 19 ... (2)
Vangansbeke, Pieter (2)
Smith, Stuart W. (2)
Björkman, Mats P., 1 ... (2)
Boike, Julia (2)
Raj, R (2)
Bauters, Marijn (2)
Ollikainen, M. (2)
Walz, Josefine (2)
Virkkala, Anna-Maria (2)
Buchmann, Nina (2)
Van Meerbeek, Koenra ... (2)
Benito Alonso, José ... (2)
Dengler, Jürgen (2)
Carbognani, Michele (2)
Blonder, Benjamin (2)
Bokhorst, Stef (2)
Scheffers, Brett R. (2)
Kleber, ME (2)
Marttila, S (2)
Andrews, Christopher (2)
Dick, Jan (2)
show less...
University
University of Gothenburg (9)
Stockholm University (4)
Lund University (4)
Karolinska Institutet (4)
Umeå University (3)
Swedish University of Agricultural Sciences (3)
show more...
Uppsala University (1)
Örebro University (1)
show less...
Language
English (19)
Research subject (UKÄ/SCB)
Natural sciences (9)
Medical and Health Sciences (7)
Agricultural Sciences (2)

Year

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view