SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Lutgendorff Femke) srt2:(2013)"

Sökning: WFRF:(Lutgendorff Femke) > (2013)

  • Resultat 1-2 av 2
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Carlsson, Anders H., et al. (författare)
  • Probiotics modulate mast cell degranulation and reduce stress-induced barrier dysfunction in vitro
  • 2013
  • Annan publikation (övrigt vetenskapligt/konstnärligt)abstract
    • BACKGROUND: Stress has well-established deleterious effects on intestinal barrier function and stressful life events are known to contribute to the development and perpetuation of inflammatory bowel diseases. Mast cells play a pivotal role in pathogenesis of stressinduced barrier dysfunction due to the release of barrier-disruptive content. Conversely, they also have recently been suggested to contribute to barrier protective properties of probiotics, through the release of 15d-PGJ2 and enhanced epithelial PPAR-γ activity. However, mechanisms remain to be elucidated.AIM: To study if probiotics can modulate mast cell mediator release, resulting in amelioration of stress-induced barrier dysfunction in vitro.METHODS: Confluent monolayers of the human colon-derived T84 epithelial cell line were co-cultured with rat basophilic leukemia (RBL)-2H3 mast cells and pretreated with probiotics (125x104 CFU/ml, 1hr) before addition of 100nM CRF to activate mast cells. Release of beta hexosaminidase, TNF-α and 15d-PGJ2 from mast cells was determined. Transepithelial resistance (TER), and permeability to microspheres (0.2μm) were measured over a 24h period. To determine dependence of PPAR-γ, monolayers were incubated with the specific PPAR-γ antagonist T0070907 before treatment with probiotics.RESULTS: CRF-induced activation of mast cells resulted in decreased TERs and increased permeability to microspheres. Both pretreatment with probiotics and filter-sterilized probiotic supernatant resulted in lower levels of mast cell-released beta hexosaminidase and TNF-α, and increased 15d-PGJ2. Furthermore, probiotics ameliorated epithelial barrier dysfunction in monolayers exposed to CRF-activated mast cells. However, when T84 monolayers were exposed to conditioned medium of CRF-activated mast cells or were incubated with T0070907, probiotics showed little or no effect.CONCLUSIONS: Probiotics modulate mast cell mediator release to a more barrier protective profile, resulting in amelioration of stress-induced epithelial barrier dysfunction, which is putatively mediated by a PPAR-γ dependent pathway.
  •  
2.
  • Lutgendorff, Femke, et al. (författare)
  • Protective Effects of Probiotics on Chronic Stress-Induced Intestinal Permeability in Rats are mediated via Mast Cells and PPARγ
  • 2013
  • Annan publikation (övrigt vetenskapligt/konstnärligt)abstract
    • BACKGROUND: Chronic stress, which may affect in the clinical course of inflammatory and functional bowel diseases, disrupts intestinal barrier function by routes involving mast cells. Probiotics have been shown to ameliorate the deleterious effects of stress on intestinal function, but mechanisms remain to be elucidated. Peroxisome proliferator-activated receptor (PPAR)-γ signaling is activated as an endogenous defense mechanism during chronic stress and evidence suggests that probiotics reduce the degradation of PPAR-γ. As a source of the endogenous agonist for PPAR-γ, 15d-PGJ2, and as an important mediator of the stress response, mast cells may have both a beneficial and a deleterious role in the effects on intestinal function by probiotics.AIM: Our aim was to study if mast cells contribute to the positive effects of probiotic therapy on intestinal function in a rat model of chronic stress.METHODS: 32 Mast cell deficient (Ws/Ws) and 32 wild-type (+/+) rats were subjected to water avoidance stress (WAS) or sham stress (SS) 1hr/day for 10 days. Seven days prior to the onset of stress, probiotics (PB, multispecies combination of 10 different lactic acid bacteria) were added to the standard diet (St) in half of the animals. To determine dependence of PPAR-γ, 8 probiotic-fed wild-type rats subjected to WAS were injected daily with the specific PPAR-γ antagonist T0070907. The colonic mucosa was exposed to E. coli HB101 incorporated with green fluorescent protein and permeability was assessed in Ussing chambers. Mesenteric lymph nodes (MLN) were cultured to determine bacterial translocation.RESULTS: Chronic stress induced a marked increase in ileal permeability to E.coli HB101 in +/+ rats (0.17±0.1 x106CFU/hr in SS/St/++ vs. 2.13±0.4 in WAS/St/++; P<0.001). This breach in barrier integrity was less pronounced in Ws/Ws rats (2.13±0.4 in WAS/St/++ vs. 1.19±0.3 in WAS/St/WsWs; P<0.01). Probiotics prevented stress-induced effects in E.coli HB101 passage only in wild-type rats (82% decrease in +/+ vs. 0% in Ws/Ws rats). Furthermore, only in the presence of mast cells did probiotics reduce the enhanced bacterial translocation to MLNs during chronic stress. In wild-type rats treated with a PPAR-γ antagonist, the barrier protective effects of probiotics were diminished.CONCLUSIONS: Mast cells acting via a PPAR-γ dependent pathway contribute to the beneficial effects of probiotics on chronic stress-induced mucosal dysfunction in rats.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-2 av 2

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy