SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Mäkinen Taija) srt2:(1998-1999)"

Sökning: WFRF:(Mäkinen Taija) > (1998-1999)

  • Resultat 1-7 av 7
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Achen, M G, et al. (författare)
  • Vascular endothelial growth factor D (VEGF-D) is a ligand for the tyrosine kinases VEGF receptor 2 (Flk1) and VEGF receptor 3 (Flt4).
  • 1998
  • Ingår i: Proceedings of the National Academy of Sciences of the United States of America. - 0027-8424 .- 1091-6490. ; 95:2
  • Tidskriftsartikel (refereegranskat)abstract
    • We have identified a member of the VEGF family by computer-based homology searching and have designated it VEGF-D. VEGF-D is most closely related to VEGF-C by virtue of the presence of N- and C-terminal extensions that are not found in other VEGF family members. In adult human tissues, VEGF-D mRNA is most abundant in heart, lung, skeletal muscle, colon, and small intestine. Analyses of VEGF-D receptor specificity revealed that VEGF-D is a ligand for both VEGF receptors (VEGFRs) VEGFR-2 (Flk1) and VEGFR-3 (Flt4) and can activate these receptors. However. VEGF-D does not bind to VEGFR-1. Expression of a truncated derivative of VEGF-D demonstrated that the receptor-binding capacities reside in the portion of the molecule that is most closely related in primary structure to other VEGF family members and that corresponds to the mature form of VEGF-C. In addition, VEGF-D is a mitogen for endothelial cells. The structural and functional similarities between VEGF-D and VEGF-C define a subfamily of the VEGFs.
  •  
2.
  • Mäkinen, Taija, et al. (författare)
  • Differential binding of vascular endothelial growth factor B splice and proteolytic isoforms to neuropilin-1.
  • 1999
  • Ingår i: Journal of Biological Chemistry. - : Elsevier BV. - 0021-9258 .- 1083-351X. ; 274:30
  • Tidskriftsartikel (refereegranskat)abstract
    • Vascular endothelial growth factor B (VEGF-B) is expressed in various tissues, especially strongly in the heart, and binds selectively to one of the VEGF receptors, VEGFR-1. The two splice isoforms, VEGF-B(167) and VEGF-B(186), have identical NH(2)-terminal cystine knot growth factor domains but differ in their COOH-terminal domains which give these forms their distinct biochemical properties. In this study, we show that both splice isoforms of VEGF-B bind specifically to Neuropilin-1 (NRP1), a receptor for collapsins/semaphorins and for the VEGF(165) isoform. The NRP1 binding of VEGF-B could be competed by an excess of VEGF(165). The binding of VEGF-B(167) was mediated by the heparin binding domain, whereas the binding of VEGF-B(186) to NRP1 was regulated by exposure of a short COOH-terminal proline-rich peptide upon its proteolytic processing. In immunohistochemistry, NRP1 distribution was found to be overlapping or adjacent to known sites of VEGF-B expression in several tissues, in particular in the developing heart, suggesting the involvement of VEGF-B in NRP1-mediated signaling.
  •  
3.
  •  
4.
  • Partanen, T A, et al. (författare)
  • Endothelial growth factor receptors in human fetal heart.
  • 1999
  • Ingår i: Circulation. - 0009-7322 .- 1524-4539. ; 100:6
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND: Endothelial receptor tyrosine kinases include 3 members of the vascular endothelial growth factor receptor (VEGFR) family and 2 members of the angiopoietin receptor (Tie) family. In addition, the VEGF(165) isoform binds to neuropilin-1 (NP-1), a receptor for collapsins/semaphorins. The importance of these receptors for vasculogenesis and angiogenesis has been shown in gene-targeted mice, but so far, little is known about their exact expression patterns in the human vasculature.METHODS AND RESULTS: Frozen sections of human fetal heart were stained immunohistochemically with receptor-specific monoclonal (VEGFR, Tie) or polyclonal (NP-1) antibodies. The following patterns were observed: The endocardium was positive for VEGFR-1, VEGFR-2, NP-1, Tie-1, and Tie-2 but negative for VEGFR-3. The coronary vessels were positive for Tie-1, Tie-2, VEGFR-1, and NP-1 and negative for VEGFR-2 and VEGFR-3. Myocardial capillaries and epicardial blood vessels stained for VEGFR-1, VEGFR-2, NP-1, and Tie-1; myocardial capillaries and epicardial veins weakly for Tie-2; and epicardial lymphatic vessels for VEGFR-2 and VEGFR-3, weakly for Tie-1 and Tie-2, but not for VEGFR-1 or NP-1.CONCLUSIONS: The results demonstrate differential expression of the endothelial growth factor receptors in distinct types of vessels in the human heart. This information is useful for the understanding of their roles in physiological and pathological processes and for their diagnostic and therapeutic application in cardiovascular medicine.
  •  
5.
  • Petrova, T V, et al. (författare)
  • Signaling via vascular endothelial growth factor receptors.
  • 1999
  • Ingår i: Experimental Cell Research. - : Elsevier BV. - 0014-4827 .- 1090-2422. ; 253:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Angiogenesis, or development of blood vessels from preexisting vasculature, has important functions under both normal and pathophysiological conditions. Vascular endothelial growth factor receptors 1-3, also known as flt-1, KDR, and flt-4, are endothelial cell-specific receptor tyrosine kinases which serve as key mediators of the angiogenic responses. The review focuses on the signaling pathways that are initiated from these receptors and the recently identified VEGF coreceptor neuroplilin-1.
  •  
6.
  •  
7.
  • Wise, L M, et al. (författare)
  • Vascular endothelial growth factor (VEGF)-like protein from orf virus NZ2 binds to VEGFR2 and neuropilin-1.
  • 1999
  • Ingår i: Proceedings of the National Academy of Sciences of the United States of America. - 0027-8424 .- 1091-6490. ; 96:6
  • Tidskriftsartikel (refereegranskat)abstract
    • Orf virus, a member of the poxvirus family, produces a pustular dermatitis in sheep, goats, and humans. The lesions induced after infection with orf virus show extensive proliferation of vascular endothelial cells, dilation of blood vessels and dermal swelling. An explanation for the nature of these lesions may lie in the discovery that orf virus encodes an apparent homolog of the mammalian vascular endothelial growth factor (VEGF) family of molecules. These molecules mediate endothelial cell proliferation, vascular permeability, angiogenesis, and lymphangiogenesis via the endothelial cell receptors VEGFR-1 (Flt1), VEGFR-2 (KDR/Flk1), and VEGFR-3 (Flt4). The VEGF-like protein of orf virus strain NZ2 (ORFV2-VEGF) is most closely related in primary structure to VEGF. In this study we examined the biological activities and receptor specificity of the ORFV2-VEGF protein. ORFV2-VEGF was found to be a disulfide-linked homodimer with a subunit of approximately 25 kDa. ORFV2-VEGF showed mitogenic activity on bovine aortic and human microvascular endothelial cells and induced vascular permeability. ORFV2-VEGF was found to bind and induce autophosphorylation of VEGFR-2 and was unable to bind or activate VEGFR-1 and VEGFR-3, but bound the newly identified VEGF165 receptor neuropilin-1. These results indicate that, from a functional viewpoint, ORFV2-VEGF is indeed a member of the VEGF family of molecules, but is unique, however, in that it utilizes only VEGFR-2 and neuropilin-1.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-7 av 7

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy