SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Magalhaes Victor de Souza) srt2:(2021)"

Sökning: WFRF:(Magalhaes Victor de Souza) > (2021)

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Bron, E., et al. (författare)
  • Tracers of the ionization fraction in dense and translucent gas: I. Automated exploitation of massive astrochemical model grids
  • 2021
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 645
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. The ionization fraction in the neutral interstellar medium (ISM) plays a key role in the physics and chemistry of the ISM, from controlling the coupling of the gas to the magnetic field to allowing fast ion-neutral reactions that drive interstellar chemistry. Most estimations of the ionization fraction have relied on deuterated species such as DCO+, whose detection is limited to dense cores representing an extremely small fraction of the volume of the giant molecular clouds that they are part of. As large field-of-view hyperspectral maps become available, new tracers may be found. The growth of observational datasets is paralleled by the growth of massive modeling datasets and new methods need to be devised to exploit the wealth of information they contain. Aims. We search for the best observable tracers of the ionization fraction based on a grid of astrochemical models, with the broader aim of finding a general automated method applicable to searching for tracers of any unobservable quantity based on grids of models. Methods. We built grids of models that randomly sample a large range of physical conditions (unobservable quantities such as gas density, temperature, elemental abundances, etc.) and computed the corresponding observables (line intensities, column densities) and the ionization fraction. We estimated the predictive power of each potential tracer by training a random forest model to predict the ionization fraction from that tracer, based on these model grids. Results. In both translucent medium and cold dense medium conditions, we found several observable tracers with very good predictive power for the ionization fraction. Many tracers in cold dense medium conditions are found to be better and more widely applicable than the traditional DCO+/HCO+ ratio. We also provide simpler analytical fits for estimating the ionization fraction from the best tracers, and for estimating the associated uncertainties. We discuss the limitations of the present study and select a few recommended tracers in both types of conditions. Conclusions. The method presented here is very general and can be applied to the measurement of any other quantity of interest (cosmic ray flux, elemental abundances, etc.) from any type of model (PDR models, time-dependent chemical models, etc.).
  •  
2.
  • Gratier, Pierre, et al. (författare)
  • Quantitative inference of the H2 column densities from 3mm molecular emission: case study towards Orion B
  • 2021
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 645
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. Based on the finding that molecular hydrogen is unobservable in cold molecular clouds, the column density measurements of molecular gas currently rely either on dust emission observation in the far-infrared, which requires space telescopes, or on star counting, which is limited in angular resolution by the stellar density. The (sub)millimeter observations of numerous trace molecules can be effective using ground-based telescopes, but the relationship between the emission of one molecular line and the H-2 column density is non-linear and sensitive to excitation conditions, optical depths, and abundance variations due to the underlying physico- chemistry.Aims. We aim to use multi-molecule line emission to infer the H-2 molecular column density from radio observations.Methods. We propose a data-driven approach to determine the H-2 gas column densities from radio molecular line observations. We use supervised machine-learning methods (random forest) on wide-field hyperspectral IRAM-30m observations of the Orion B molecular cloud to train a predictor of the H-2 column density, using a limited set of molecular lines between 72 and 116 GHz as input, and the Herschel-based dust-derived column densities as "ground truth" output.Results. For conditions similar to those of the Orion B molecular cloud, we obtained predictions of the H-2 column density within a typical factor of 1.2 from the Herschel-based column density estimates. A global analysis of the contributions of the different lines to the predictions show that the most important lines are (CO)-C-13(1-0), (CO)-C-12(1-0), (CO)-O-18(1-0), and HCO+(1-0). A detailed analysis distinguishing between diffuse, translucent, filamentary, and dense core conditions show that the importance of these four lines depends on the regime, and that it is recommended that the N2H+(1-0) and CH3OH(2(0)-1(0)) lines be added for the prediction of the H-2 column density in dense core conditions.Conclusions. This article opens a promising avenue for advancing direct inferencing of important physical parameters from the molecular line emission in the millimeter domain. The next step will be to attempt to infer several parameters simultaneously (e.g., the column density and far-UV illumination field) to further test the method.
  •  
3.
  • Roueff, Antoine, et al. (författare)
  • C18O, 13CO, and 12CO abundances and excitation temperatures in the Orion B molecular cloud: Analysis of the achievable precision in modeling spectral lines within the approximation of the local thermodynamic equilibrium
  • 2021
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 645
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. CO isotopologue transitions are routinely observed in molecular clouds for the purpose of probing the column density of the gas and the elemental ratios of carbon and oxygen, in addition to tracing the kinematics of the environment. Aims. Our study is aimed at estimating the abundances, excitation temperatures, velocity field, and velocity dispersions of the three main CO isotopologues towards a subset of the Orion B molecular cloud, which includes IC 434, NGC 2023, and the Horsehead pillar. Methods. We used the Cramer Rao bound (CRB) technique to analyze and estimate the precision of the physical parameters in the framework of local-thermodynamic-equilibrium (LTE) excitation and radiative transfer with added white Gaussian noise. We propose a maximum likelihood estimator to infer the physical conditions from the 1-0 and 2-1 transitions of CO isotopologues. Simulations show that this estimator is unbiased and proves efficient for a common range of excitation temperatures and column densities (Tex > 6 K, N > 1014-1015 cm-2). Results. Contrary to general assumptions, the various CO isotopologues have distinct excitation temperatures and the line intensity ratios between different isotopologues do not accurately reflect the column density ratios. We find mean fractional abundances that are consistent with previous determinations towards other molecular clouds. However, significant local deviations are inferred, not only in regions exposed to the UV radiation field, but also in shielded regions. These deviations result from the competition between selective photodissociation, chemical fractionation, and depletion on grain surfaces. We observe that the velocity dispersion of the C18O emission is 10% smaller than that of 13CO. The substantial gain resulting from the simultaneous analysis of two different rotational transitions of the same species is rigorously quantified. Conclusions. The CRB technique is a promising avenue for analyzing the estimation of physical parameters from the fit of spectral lines. Future works will generalize its application to non-LTE excitation and radiative transfer methods.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy