SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Maleki Kimia T.) "

Sökning: WFRF:(Maleki Kimia T.)

  • Resultat 1-5 av 5
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Kerkman, Priscilla, et al. (författare)
  • Generation of plasma cells and CD27-IgD- B cells during hantavirus infection is associated with distinct pathological findings
  • 2021
  • Ingår i: Clinical & Translational Immunology (CTI). - : John Wiley & Sons. - 2050-0068. ; 10
  • Tidskriftsartikel (refereegranskat)abstract
    • Objective: Human hantavirus infections can cause haemorrhagic fever with renal syndrome (HFRS). The pathogenic mechanisms arenot fully understood, nor if they affect the humoral immune system. The objective of this study was to investigate humoral immune responses to hantavirus infection and to correlate them to the typical features of HFRS: thrombocytopenia and transient kidney dysfunction.Methods: We performed a comprehensive characterisation of longitudinal antiviral B-cell responses of 26 hantavirus patients and combined this with paired clinical data. In addition, we measured extracellular adenosine triphosphate (ATP)and its breakdown products in circulation and performed in vitro stimulations to address its effect on B cells.Results: We found that thrombocytopenia was correlated to an elevated frequency of plasmablasts in circulation. In contrast, kidney dysfunction was indicative of an accumulation of CD27-IgD- B cells and CD27/low plasmablasts. Finally, we provide evidence that high levels of extracellular ATP and matrix metalloproteinase 8 can contribute to shedding of CD27 during human hantavirus infection.Conclusion:  Our findings demonstrate that thrombocytopenia and kidneydysfunction associate with distinctly different effects on the humoral immune system. Moreover, hantavirus-infectedindividuals have significantly elevated levels of extracellular ATP incirculation.
  •  
2.
  • Lagerqvist, Nina, et al. (författare)
  • Evaluation of 11 SARS-CoV-2 antibody tests by using samples from patients with defined IgG antibody titers
  • 2021
  • Ingår i: Scientific Reports. - : Nature Publishing Group. - 2045-2322. ; 11:1
  • Tidskriftsartikel (refereegranskat)abstract
    • We evaluated the performance of 11 SARS-CoV-2 antibody tests using a reference set of heat-inactivated samples from 278 unexposed persons and 258 COVID-19 patients, some of whom contributed serial samples. The reference set included samples with a variation in SARS-CoV-2 IgG antibody titers, as determined by an in-house immunofluorescence assay (IFA). The five evaluated rapid diagnostic tests had a specificity of 99.0% and a sensitivity that ranged from 56.3 to 81.6% and decreased with low IFA IgG titers. The specificity was > 99% for five out of six platform-based tests, and when assessed using samples collected ≥ 22 days after symptom onset, two assays had a sensitivity of > 96%. These two assays also detected samples with low IFA titers more frequently than the other assays. In conclusion, the evaluated antibody tests showed a heterogeneity in their performances and only a few tests performed well with samples having low IFA IgG titers, an important aspect for diagnostics and epidemiological investigations.
  •  
3.
  • Maleki, Kimia T., et al. (författare)
  • MAIT cell activation is associated with disease severity markers in acute hantavirus infection
  • 2021
  • Ingår i: Cell Reports Medicine. - : Saunders Elsevier. - 2666-3791. ; 2:3
  • Tidskriftsartikel (refereegranskat)abstract
    • Hantaviruses are zoonotic RNA viruses that cause severe acute disease in humans. Infected individuals have strong inflammatory responses that likely cause immunopathology. Here, we studied the response of mucosal-associated invariant T (MAIT) cells in peripheral blood of individuals with hemorrhagic fever with renal syndrome (HFRS) caused by Puumala orthohantavirus, a hantavirus endemic in Europe. We show that MAIT cell levels decrease in the blood during HFRS and that residual MAIT cells are highly activated. This activation correlates with HFRS severity markers. In vitro activation of MAIT cells by hantavirus-exposed antigen-presenting cells is dependent on type I interferons (IFNs) and independent of interleukin-18 (IL-18). These findings highlight the role of type I IFNs in virus-driven MAIT cell activation and suggest a potential role of MAIT cells in the disease pathogenesis of viral infections.
  •  
4.
  • Scholz, Saskia, et al. (författare)
  • Human hantavirus infection elicits pronounced redistribution of mononuclear phagocytes in peripheral blood and airways
  • 2017
  • Ingår i: PLoS Pathogens. - : Public library science. - 1553-7366 .- 1553-7374. ; 13:6
  • Tidskriftsartikel (refereegranskat)abstract
    • Hantaviruses infect humans via inhalation of virus-contaminated rodent excreta. Infection can cause severe disease with up to 40% mortality depending on the viral strain. The virus primarily targets the vascular endothelium without direct cytopathic effects. Instead, exaggerated immune responses may inadvertently contribute to disease development. Mononuclear phagocytes (MNPs), including monocytes and dendritic cells (DCs), orchestrate the adaptive immune responses. Since hantaviruses are transmitted via inhalation, studying immunological events in the airways is of importance to understand the processes leading to immunopathogenesis. Here, we studied 17 patients infected with Puumala virus that causes a mild form of hemorrhagic fever with renal syndrome (HFRS). Bronchial biopsies as well as longitudinal blood draws were obtained from the patients. During the acute stage of disease, a significant influx of MNPs expressing HLA-DR, CD11c or CD123 was detected in the patients' bronchial tissue. In parallel, absolute numbers of MNPs were dramatically reduced in peripheral blood, coinciding with viremia. Expression of CCR7 on the remaining MNPs in blood suggested migration to peripheral and/or lymphoid tissues. Numbers of MNPs in blood subsequently normalized during the convalescent phase of the disease when viral RNA was no longer detectable in plasma. Finally, we exposed blood MNPs in vitro to Puumala virus, and demonstrated an induction of CCR7 expression on MNPs. In conclusion, the present study shows a marked redistribution of blood MNPs to the airways during acute hantavirus disease, a process that may underlie the local immune activation and contribute to immunopathogenesis in hantavirus-infected patients.
  •  
5.
  • Sola-Riera, Caries, et al. (författare)
  • Hantavirus Inhibits TRAIL-Mediated Killing of Infected Cells by Downregulating Death Receptor 5
  • 2019
  • Ingår i: Cell Reports. - : Cell Press. - 2211-1247. ; 28:8, s. 2124-2139
  • Tidskriftsartikel (refereegranskat)abstract
    • Cytotoxic lymphocytes normally kill virus-infected cells by apoptosis induction. Cytotoxic granule-dependent apoptosis induction engages the intrinsic apoptosis pathway, whereas death receptor (DR)-dependent apoptosis triggers the extrinsic apoptosis pathway. Hantaviruses, single-stranded RNA viruses of the order Bunyavirales, induce strong cytotoxic lymphocyte responses in infected humans. Cytotoxic lymphocytes, however, are largely incapable of eradicating hantavirus-infected cells. Here, we show that the prototypic hantavirus, Hantaan virus (HTNV), induces TRAIL production but strongly inhibits TRAIL-mediated extrinsic apoptosis induction in infected cells by downregulating DR5 cell surface expression. Mechanistic analyses revealed that HTNV triggers both 26S proteasome-dependent degradation of DR5 through direct ubiquitination of DR5 and hampers DR5 transport to the cell surface. These results corroborate earlier findings, demonstrating that hantavirus also inhibits cytotoxic cell granule-dependent apoptosis induction. Together, these findings show that HTNV counteracts intrinsic and extrinsic apoptosis induction pathways, providing a defense mechanism utilized by hantaviruses to inhibit cytotoxic cell-mediated eradication of infected cells.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-5 av 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy