SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Malinina Evgenya) srt2:(2020-2024)"

Sökning: WFRF:(Malinina Evgenya) > (2020-2024)

  • Resultat 1-5 av 5
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Bengtsson, Sara K. S., 1978-, et al. (författare)
  • Extra-synaptic GABAA receptor potentiation and neurosteroid-induced learning deficits are inhibited by GR3027, a GABAA modulating steroid antagonist
  • 2023
  • Ingår i: Biomolecules. - : MDPI. - 2218-273X. ; 13:10
  • Tidskriftsartikel (refereegranskat)abstract
    • Objectives In Vitro: To study the effects of GR3027 (golexanolone) on neurosteroid-induced GABA-mediated current responses under physiological GABAergic conditions with recombinant human α5β3γ2L and α1β2γ2L GABAA receptors expressed in human embryonic kidney cells, using the response patch clamp technique combined with the Dynaflow™ application system. With α5β3γ2L receptors, 0.01–3 μM GR3027, in a concentration-dependent manner, reduced the current response induced by 200 nM THDOC + 0.3 µM GABA, as well as the THDOC-induced direct gated effect. GR3027 (1 μM) alone had no effect on the GABA-mediated current response or current in the absence of GABA. With α1β2γ2L receptors, GR3027 alone had no effect on the GABA-mediated current response or did not affect the receptor by itself. Meanwhile, 1–3 µM GR3027 reduced the current response induced by 200 nM THDOC + 30 µM GABA and 3 µM GR3027 that induced by 200 nM THDOC when GABA was not present. Objectives In Vivo: GR3027 reduces allopregnanolone (AP)-induced decreased learning and anesthesia in male Wistar rats. Rats treated i.v. with AP (2.2 mg/kg) or vehicle were given GR3027 in ratios of 1:0.5 to 1:5 dissolved in 10% 2-hydroxypropyl-beta-cyclodextrin. A dose ratio of AP:GR3027 of at least 1:2.5 antagonized the AP-induced decreased learning in the Morris Water Mase (MWM) and 1:7.5 antagonized the loss of righting reflex (LoR). GR3027 treatment did not change other functions in the rat compared to the vehicle group. Conclusions: GR3027 functions in vitro as an inhibitor of GABAA receptors holding α5β3γ2L and α1β2γ2L, in vivo, in the rat, as a dose-dependent inhibitor toward AP’s negative effects on LoR and learning in the MWM.
  •  
2.
  • Bäckström, Torbjörn, et al. (författare)
  • Isoallopregnanolone inhibits estrus cycle-dependent aggressive behavior
  • 2023
  • Ingår i: Biomolecules. - : MDPI. - 2218-273X. ; 13:6
  • Tidskriftsartikel (refereegranskat)abstract
    • Among female rats, some individuals show estrus cycle-dependent irritability/aggressive behaviors, and these individual rats may be used as a model for premenstrual dysphoric disorder (PMDD). We wanted to investigate if these behaviors are related to the estrus cycle phase containing moderately increased levels of positive GABA-A receptor-modulating steroids (steroid-PAM), especially allopregnanolone (ALLO), and if the adverse behavior can be antagonized. The electrophysiology studies in this paper show that isoallopregnanolone (ISO) is a GABA-A-modulating steroid antagonist (GAMSA), meaning that ISO can antagonize the agonistic effects of positive GABA-A receptor-modulating steroids in both α1β2γ2L and α4β3δ GABA-A receptor subtypes. In this study, we also investigated whether ISO could antagonize the estrus cycle-dependent aggressive behaviors in female Wistar rats using a resident–intruder test. Our results confirmed previous reports of estrus cycle-dependent behaviors in that 42% of the tested rats showed higher levels of irritability/aggression at diestrus compared to those at estrus. Furthermore, we found that, during the treatment with ISO, the aggressive behavior at diestrus was alleviated to a level comparable to that of estrus. We noticed an 89% reduction in the increase in aggressive behavior at diestrus compared to that at estrus. Vehicle treatment in the same animals showed a minimal effect on the diestrus-related aggressive behavior. In conclusion, we showed that ISO can antagonize Steroid-PAM both in α1β2γ2L and α4β3δ GABA-A receptor subtypes and inhibit estrus cycle-dependent aggressive behavior.
  •  
3.
  • Censoni, Luciano, et al. (författare)
  • Verification of multi-structure targeting in chronic microelectrode brain recordings from CT scans
  • 2022
  • Ingår i: Journal of Neuroscience Methods. - : Elsevier. - 0165-0270 .- 1872-678X. ; 382
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Large-scale microelectrode recordings offer a unique opportunity to study neurophysiological processes at the network level with single cell resolution. However, in the small brains of many experimental animals, it is often technically challenging to verify the correct targeting of the intended structures, which inherently limits the reproducibility of acquired data.New method: To mitigate this problem, we have developed a method to programmatically segment the trajectory of electrodes arranged in larger arrays from acquired CT-images and thereby determine the position of individual recording tips with high spatial resolution, while also allowing for coregistration with an anatomical atlas, without pre-processing of the animal samples or post-imaging histological analyses.Results: Testing the technical limitations of the developed method, we found that the choice of scanning angle influences the achievable spatial resolution due to shadowing effects caused by the electrodes. However, under optimal acquisition conditions, individual electrode tip locations within arrays with 250 µm inter-electrode spacing were possible to reliably determine.Comparison to existing methods: Comparison to a histological verification method suggested that, under conditions where individual wires are possible to track in slices, a 90% correspondence could be achieved in terms of the number of electrodes groups that could be reliably assigned to the same anatomical structure.Conclusions: The herein reported semi-automated procedure to verify anatomical targeting of brain structures in the rodent brain could help increasing the quality and reproducibility of acquired neurophysiological data by reducing the risk of assigning recorded brain activity to incorrectly identified anatomical locations.
  •  
4.
  • Kuznetsova, Tatiana, et al. (författare)
  • Visual stimulation with blue wavelength light drives V1 effectively eliminating stray light contamination during two-photon calcium imaging
  • 2021
  • Ingår i: Journal of Neuroscience Methods. - : Elsevier. - 0165-0270 .- 1872-678X. ; 362
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Brain visual circuits are often studied in vivo by imaging Ca2+ indicators with green-shifted emission spectra. Polychromatic white visual stimuli have a spectrum that partially overlaps indicators´ emission spectra, resulting in significant contamination of calcium signals.New method: To overcome light contamination problems we choose blue visual stimuli, having a spectral composition not overlapping with Ca2+ indicator´s emission spectrum. To compare visual responsiveness to blue and white stimuli we used electrophysiology (visual evoked potentials –VEPs) and 3D acousto-optic two-photon (2P) population Ca2+ imaging in mouse primary visual cortex (V1).Results: VEPs in response to blue and white stimuli had comparable peak amplitudes and latencies. Ca2+ imaging in a Thy1 GP4.3 line revealed that the populations of neurons responding to blue and white stimuli were largely overlapping, that their responses had similar amplitudes, and that functional response properties such as orientation and direction selectivities were also comparable.Comparison with existing methods: Masking or shielding the microscope are often used to minimize the contamination of Ca2+ signal by white light, but they are time consuming, bulky and thus can limit experimental design, particularly in the more and more frequently used awake set-up. Blue stimuli not interfering with imaging allow to omit shielding.Conclusions: Together, our results show that the selected blue light stimuli evoke responses comparable to those evoked by white stimuli in mouse V1. This will make complex designs of imaging experiments in behavioral set-ups easier, and facilitate the combination of Ca2+ imaging with electrophysiology and optogenetics.
  •  
5.
  • Stan, Tiberiu Loredan, et al. (författare)
  • Neurophysiological treatment effects of mesdopetam, pimavanserin and clozapine in a rodent model of Parkinson's disease psychosis
  • 2024
  • Ingår i: Neurotherapeutics. - : Elsevier. - 1878-7479 .- 1933-7213. ; 21:2, s. 1-12
  • Tidskriftsartikel (refereegranskat)abstract
    • Psychosis in Parkinson's disease is a common phenomenon associated with poor outcomes. To clarify the pathophysiology of this condition and the mechanisms of antipsychotic treatments, we have here characterized the neurophysiological brain states induced by clozapine, pimavanserin, and the novel prospective antipsychotic mesdopetam in a rodent model of Parkinson's disease psychosis, based on chronic dopaminergic denervation by 6-OHDA lesions, levodopa priming, and the acute administration of an NMDA antagonist. Parallel recordings of local field potentials from eleven cortical and sub-cortical regions revealed shared neurophysiological treatment effects for the three compounds, despite their different pharmacological profiles, involving reversal of features associated with the psychotomimetic state, such as a reduction of aberrant high-frequency oscillations in prefrontal structures together with a decrease of abnormal synchronization between different brain regions. Other drug-induced neurophysiological features were more specific to each treatment, affecting network oscillation frequencies and entropy, pointing to discrete differences in mechanisms of action. These findings indicate that neurophysiological characterization of brain states is particularly informative when evaluating therapeutic mechanisms in conditions involving symptoms that are difficult to assess in rodents such as psychosis, and that mesdopetam should be further explored as a potential novel antipsychotic treatment option for Parkinson psychosis.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-5 av 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy