SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Malmberg P.) srt2:(2020-2024)"

Sökning: WFRF:(Malmberg P.) > (2020-2024)

  • Resultat 1-26 av 26
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Broadaway, K Alaine, et al. (författare)
  • Loci for insulin processing and secretion provide insight into type 2 diabetes risk.
  • 2023
  • Ingår i: American Journal of Human Genetics. - : Elsevier. - 0002-9297 .- 1537-6605. ; 110:2, s. 284-299
  • Tidskriftsartikel (refereegranskat)abstract
    • Insulin secretion is critical for glucose homeostasis, and increased levels of the precursor proinsulin relative to insulin indicate pancreatic islet beta-cell stress and insufficient insulin secretory capacity in the setting of insulin resistance. We conducted meta-analyses of genome-wide association results for fasting proinsulin from 16 European-ancestry studies in 45,861 individuals. We found 36 independent signals at 30 loci (p value < 5 × 10-8), which validated 12 previously reported loci for proinsulin and ten additional loci previously identified for another glycemic trait. Half of the alleles associated with higher proinsulin showed higher rather than lower effects on glucose levels, corresponding to different mechanisms. Proinsulin loci included genes that affect prohormone convertases, beta-cell dysfunction, vesicle trafficking, beta-cell transcriptional regulation, and lysosomes/autophagy processes. We colocalized 11 proinsulin signals with islet expression quantitative trait locus (eQTL) data, suggesting candidate genes, including ARSG, WIPI1, SLC7A14, and SIX3. The NKX6-3/ANK1 proinsulin signal colocalized with a T2D signal and an adipose ANK1 eQTL signal but not the islet NKX6-3 eQTL. Signals were enriched for islet enhancers, and we showed a plausible islet regulatory mechanism for the lead signal in the MADD locus. These results show how detailed genetic studies of an intermediate phenotype can elucidate mechanisms that may predispose one to disease.
  •  
2.
  •  
3.
  •  
4.
  •  
5.
  •  
6.
  •  
7.
  • Bastos, Carlos A.P., et al. (författare)
  • Copper nanoparticles have negligible direct antibacterial impact
  • 2020
  • Ingår i: NanoImpact. - : Elsevier BV. - 2452-0748. ; 17
  • Tidskriftsartikel (refereegranskat)abstract
    • Introduction: Soluble copper that can be acquired by bacteria is toxic and therefore antimicrobial. Whether nanostructured copper materials, in either disperse or agglomerated form, have antimicrobial impact, aside from that of their dissolution products, is not clear and was herein addressed. Methods: We took five nanostructured copper materials, two metallic, and three oxo-hydroxides with one of these being silicate-substituted. Four agglomerated in the bacterial growth media whilst the silicate-substituted material remained disperse and small (6.5 nm diameter). Antibacterial activity against E. coli was assessed with copper phase distribution measured over time. Using the dose of soluble copper, and benchmark dose non-linear regression modelling, we determined how well this phase predicted antimicrobial activity. Finally, we used Time-of-Flight Secondary Ion Mass Spectrometry (ToF-SIMS) analysis to investigate whether membrane adhe- sion effects by copper were plausible or if intracellular uptake most likely explained the bacterial impact of copper. Results: Comparison over time of antimicrobial activity against particulate or soluble phases of the aquated materials clearly demonstrated that soluble copper but not particulate forms were associated with inhibition of bacterial growth. Indeed, the benchmark dose modelling showed the soluble dose required to cause a 50% reduction in E. coli growth was strongly clustered – for all particle formulations – at 14.5 mg/L (10–19 mg/L 90% confidence interval). By comparison, total copper levels associated with the same reduction in viability varied widely (45–549 mg/L). Finally, in favour of this soluble product dominance in terms of antimicrobial activity, copper had low association with bacterial membrane (something both soluble and particulate materials could do) but showed high intra-bacterial levels (something only soluble copper could do). Conclusion: Taken together our data show that it is the uptake of soluble but not particulate copper, and the intracellular loading not just contact and membrane association, that drives copper toxicity to bacteria. Therapeutic strategies for novel antimicrobial copper compounds should consider these findings.
  •  
8.
  • Hammer, Quirin, et al. (författare)
  • Combined Genetic Ablation of CD54 and CD58 in CAR Engineered Cytotoxic Lymphocytes Effectively Averts Allogeneic Immune Cell Rejection
  • 2022
  • Ingår i: Blood. - : American Society of Hematology. - 0006-4971 .- 1528-0020. ; 140:Supplement 1, s. 1165-1166
  • Tidskriftsartikel (övrigt vetenskapligt/konstnärligt)abstract
    • Allogeneic cell therapies hold promise to be cost effective with scaled manufacturing for multi-dosing and on-demand off-the-shelf availability. A critical consideration for allogeneic cell products is their ability to persist, maintain function and avoid rejection by the patient's immune system. Genetic knockout (KO) of beta-2-microglobulin (B2M) leads to complete loss of cell-surface human leukocyte antigen (HLA) class I expression and efficiently abrogates CD8+ T-cell reactivity. However, loss of HLA class I triggers NK cell-mediated missing-self recognition and manipulation of B2M must therefore be combined with other immune-modulating strategies to limit recipient NK cell reactivity.We hypothesized that rejection by the patient's immune system can be diminished in primary CAR T cells, iPSC-derived T (iT) and NK (iNK) cells by reverse-engineering common tumor escape mechanisms. The adhesion molecules CD54 and CD58 are both present at the target cell side of the immune synapse, and loss of either of these molecules have previously been reported to elicit immune escape. Here, we show that the combined deletion of CD54 and CD58 in allogeneic immune effector cells makes them resistant to rejection by recipient immune cells through unidirectional reduced synapse formation (Figure 1A).HLA class I down-regulation by B2M silencing in primary T and NK cells triggered potent cytotoxicity by resting allogeneic NK cells. This response was mostly driven by educated NK cells expressing either NKG2A or killer cell immunoglobulin-like receptors (KIR) binding to HLA-E and HLA-C, respectively. However, over-expression of HLA-E or single HLA-C ligands in a K562 screening model only shut down the specific response of the NK cell subset carrying the cognate inhibitory receptor, resulting in only partial resistance to NK cells at the bulk level. Notably, the introduction of HLA-E was particularly detrimental in donors with expanded NKG2C+ NK cell subsets, due to its stimulatory effect through the activating NKG2C receptor. In contrast, combined deletion of CD54 and CD58 in target cells uniquely decreased the response of all tested NK cell subsets and showed universal reduction across NK cell populations from 18 healthy donors (Figure 1B). To delineate the mechanisms behind the increased resistance of target cells carrying these edits, we studied NK cell-target cell interactions at the single cell level by confocal microscopy in microchips. Allogeneic NK cells formed fewer conjugates and failed to form productive immune synapses with CD54-/-CD58-/- target cells, supporting the notion that they are more resistant to NK-cell mediated killing by unidirectional altered adhesion.We next introduced these edits in primary B2M-/- T cells engineered to express a second generation CAR19 from the TRAC locus. Corroborating the K562 screen, CD54-/-CD58-/-B2M-/- CAR-T cells had a selective survival advantage over B2M-/- CAR T cells and HLA-E-over-expressing B2M-/- CAR T cells in conventional mixed lymphocyte reaction (MLR) assays in vitro. Furthermore, we established an in vivo model to probe the effect of different genetic edits on the persistence of allogeneic cell therapy products. To this end, a mixed population of B2M-/- CAR T cells additionally bearing either CD54 and/or CD58 KO, HLA-E over-expression, or no further edits were infused into mice harboring allogeneic healthy donor PBMC. We found that CD54-/-CD58-/-B2M-/- CAR T cells had significantly better in vivo persistence compared to both B2M-/- CAR T cells and HLA-E+B2M-/- CAR T cells in the presence of PBMC from healthy donors (Figure 1B).Although multiplexed editing is feasible in primary CAR T cells, the iPSC platform has an unmatched capacity for homogenously introducing multiple immune-evasion strategies for off-the-shelf cell therapy. Similar to primary CAR T cells, multiplexed edited CD54-/-CD58-/-B2M-/-CIITA-/- iNK cells showed normal growth kinetics and were resistant to rejection by activated allogeneic NK cells in MLR assays.Together, these data demonstrate that reverse-engineering of common tumor escape mechanisms, which render target cells less susceptible to immune synapse formation, is an effective strategy to avert immune rejection of allogeneic CAR T and iPSC-derived CAR NK cells.
  •  
9.
  •  
10.
  •  
11.
  •  
12.
  • Hofmarcher, T, et al. (författare)
  • A global analysis of the value of precision medicine in oncology - The case of non-small cell lung cancer
  • 2023
  • Ingår i: Frontiers in medicine. - : Frontiers Media SA. - 2296-858X. ; 10, s. 1119506-
  • Tidskriftsartikel (refereegranskat)abstract
    • Biomarker testing is indispensable for the implementation of precision medicine (PM) in oncology. The aim of this study was to assess the value of biomarker testing from a holistic perspective based on the example of advanced non-small cell lung cancer (aNSCLC).Materials and methodsA partitioned survival model was populated with data from pivotal clinical trials of first-line treatments in aNSCLC. Three testing scenarios were considered; “no biomarker testing” encompassing chemotherapy treatment, “sequential testing” for EGFR and ALK encompassing treatment with targeted- or chemotherapy, and “multigene testing” covering EGFR, ALK, ROS1, BRAF, NTRK, MET, RET and encompassing treatment with targeted- or immuno(chemo)therapy. Analyses of health outcomes and costs were run for nine countries (Australia, Brazil, China, Germany, Japan, Poland, South Africa, Turkey, United States). A 1-year and 5-year time horizon was applied. Information on test accuracy was combined with country-specific information on epidemiology and unit costs.ResultsCompared to the no-testing scenario, survival improved and treatment-related adverse events decreased with increased testing. Five-year survival increased from 2% to 5–7% and to 13–19% with sequential testing and multigene testing, respectively. The highest survival gains were observed in East Asia due to a higher local prevalence of targetable mutations. Overall costs increased with increased testing in all countries. Although costs for testing and medicines increased, costs for treatment of adverse events and end-of-life care decreased throughout all years. Non-health care costs (sick leave and disability pension payments) decreased during the first year but increased over a 5-year horizon.ConclusionThe broad use of biomarker testing and PM in aNSCLC leads to more efficient treatment assignment and improves health outcomes for patients globally, in particular prolonged progression-free disease phase and overall survival. These health gains require investment in biomarker testing and medicines. While costs for testing and medicines would initially increase, cost decreases for other medical services and non-health care costs may partly offset the cost increases.
  •  
13.
  •  
14.
  • Kiviniemi, T., et al. (författare)
  • A randomized prospective multicenter trial for stroke prevention by prophylactic surgical closure of the left atrial appendage in patients undergoing bioprosthetic aortic valve surgery––LAA-CLOSURE trial protocol
  • 2021
  • Ingår i: American Heart Journal. - : Elsevier BV. - 0002-8703 .- 1097-6744. ; 237, s. 127-134
  • Tidskriftsartikel (refereegranskat)abstract
    • Patients undergoing surgical aortic valve replacement (SAVR) are at high risk for atrial fibrillation (AF) and stroke after surgery. There is an unmet clinical need to improve stroke prevention in this patient population. The LAA-CLOSURE trial aims to assess the efficacy and safety of prophylactic surgical closure of the left atrial appendage for stroke and cardiovascular death prevention in patients undergoing bioprosthetic SAVR. This randomized, open-label, prospective multicenter trial will enroll 1,040 patients at 13 European sites. The primary endpoint is a composite of cardiovascular mortality, stroke and systemic embolism at 5 years. Secondary endpoints include cardiovascular mortality, stroke, systemic embolism, bleed fulfilling academic research consortium (BARC) criteria, hospitalization for decompensated heart failure and health economic evaluation. Sample size is based on 30% risk reduction in time to event analysis of primary endpoint. Prespecified reports include 30-day safety analysis focusing on AF occurrence and short-term outcomes and interim analyses at 1 and 3 years for primary and secondary outcomes. Additionally, substudies will be performed on the completeness of the closure using transesophageal echocardiography/cardiac computed tomography and long-term ECG recording at one year after the operation. © 2021 The Author(s)
  •  
15.
  •  
16.
  •  
17.
  •  
18.
  •  
19.
  •  
20.
  • Philippon, Camille, et al. (författare)
  • Allelic variation of KIR and HLA tunes the cytolytic payload and determines functional hierarchy of NK cell repertoires
  • 2023
  • Ingår i: Blood Advances. - : American Society of Hematology. - 2473-9529 .- 2473-9537. ; 7:16, s. 4492-4504
  • Tidskriftsartikel (refereegranskat)abstract
    • The functionality of natural killer (NK) cells is tuned during education and is associated with remodeling of the lysosomal compartment. We hypothesized that genetic variation in killer cell immunoglobulin-like receptor (KIR) and HLA, which is known to influence the functional strength of NK cells, fine-tunes the payload of effector molecules stored in secretory lysosomes. To address this possibility, we performed a high-resolution analysis of KIR and HLA class I genes in 365 blood donors and linked genotypes to granzyme B loading and functional phenotypes. We found that granzyme B levels varied across individuals but were stable over time in each individual and genetically determined by allelic variation in HLA class I genes. A broad mapping of surface receptors and lysosomal effector molecules revealed that DNAM-1 and granzyme B levels served as robust metric of the functional state in NK cells. Variation in granzyme B levels at rest was tightly linked to the lytic hit and downstream killing of major histocompatibility complex-deficient target cells. Together, these data provide insights into how variation in genetically hardwired receptor pairs tunes the releasable granzyme B pool in NK cells, resulting in predictable hierarchies in global NK cell function.
  •  
21.
  • Silva, M., et al. (författare)
  • Plasmodium falciparum Drug Resistance Genes pfmdr1 and pfcrt In Vivo Co-Expression During Artemether-Lumefantrine Therapy
  • 2022
  • Ingår i: Frontiers in Pharmacology. - : Frontiers Media S.A.. - 1663-9812. ; 13
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Artemisinin-based combination therapies (ACTs) are the global mainstay treatment of uncomplicated Plasmodium falciparum infections. PfMDR1 and PfCRT are two transmembrane transporters, associated with sensitivity to several antimalarials, found in the parasite food vacuole. Herein, we explore if their relatedness extends to overlapping patterns of gene transcriptional activity before and during ACT administration.Methods: In a clinical trial performed in Tanzania, we explored the pfmdr1 and pfcrt transcription levels from 48 patients with uncomplicated P. falciparum malaria infections who underwent treatment with artemether-lumefantrine (AL). Samples analyzed were collected before treatment initiation and during the first 24 h of treatment. The frequency of PfMDR1 N86Y and PfCRT K76T was determined through PCR-RFLP or direct amplicon sequencing. Gene expression was analyzed by real-time quantitative PCR.Results: A wide range of pre-treatment expression levels was observed for both genes, approximately 10-fold for pfcrt and 50-fold for pfmdr1. In addition, a significant positive correlation demonstrates pfmdr1 and pfcrt co-expression. After AL treatment initiation, pfmdr1 and pfcrt maintained the positive co-expression correlation, with mild downregulation throughout the 24 h post-treatment. Additionally, a trend was observed for PfMDR1 N86 alleles and higher expression before treatment initiation.Conclusion: pfmdr1 and pfcrt showed significant co-expression patterns in vivo, which were generally maintained during ACT treatment. This observation points to relevant related roles in the normal parasite physiology, which seem essential to be maintained when the parasite is exposed to drug stress. In addition, keeping the simultaneous expression of both transporters might be advantageous for responding to the drug action.
  •  
22.
  • Thomen, Aurélien, et al. (författare)
  • Subcellular Mass Spectrometry Imaging and Absolute Quantitative Analysis across Organelles
  • 2020
  • Ingår i: ACS Nano. - : American Chemical Society (ACS). - 1936-086X .- 1936-0851. ; 14:4, s. 4316-4325
  • Tidskriftsartikel (refereegranskat)abstract
    • Mass spectrometry imaging is a field that promises to become a mainstream bioanalysis technology by allowing the combination of single-cell imaging and subcellular quantitative analysis. The frontier of single-cell imaging has advanced to the point where it is now possible to compare the chemical contents of individual organelles in terms of raw or normalized ion signal. However, to realize the full potential of this technology, it is necessary to move beyond this concept of relative quantification. Here we present a nanoSIMS imaging method that directly measures the absolute concentration of an organelle-associated, isotopically labeled, pro-drug directly from a mass spectrometry image. This is validated with a recently developed nanoelectrochemistry method for single organelles. We establish a limit of detection based on the number of isotopic labels used and the volume of the organelle of interest, also offering this calculation as a web application. This approach allows subcellular quantification of drugs and metabolites, an overarching and previously unmet goal in cell science and pharmaceutical development.
  •  
23.
  •  
24.
  •  
25.
  • Vedsted, P, et al. (författare)
  • Diagnostic pathways for breast cancer in 10 International Cancer Benchmarking Partnership (ICBP) jurisdictions: an international comparative cohort study based on questionnaire and registry data
  • 2022
  • Ingår i: BMJ open. - : BMJ. - 2044-6055. ; 12:12, s. e059669-
  • Tidskriftsartikel (refereegranskat)abstract
    • A growing body of evidence suggests longer time between symptom onset and start of treatment affects breast cancer prognosis. To explore this association, the International Cancer Benchmarking Partnership Module 4 examined differences in breast cancer diagnostic pathways in 10 jurisdictions across Australia, Canada, Denmark, Norway, Sweden and the UK.SettingPrimary care in 10 jurisdictions.ParticipantData were collated from 3471 women aged >40 diagnosed for the first time with breast cancer and surveyed between 2013 and 2015. Data were supplemented by feedback from their primary care physicians (PCPs), cancer treatment specialists and available registry data.Primary and secondary outcome measuresPatient, primary care, diagnostic and treatment intervals.ResultsOverall, 56% of women reported symptoms to primary care, with 66% first noticing lumps or breast changes. PCPs reported 77% presented with symptoms, of whom 81% were urgently referred with suspicion of cancer (ranging from 62% to 92%; Norway and Victoria). Ranges for median patient, primary care and diagnostic intervals (days) for symptomatic patients were 3–29 (Denmark and Sweden), 0–20 (seven jurisdictions and Ontario) and 8–29 (Denmark and Wales). Ranges for median treatment and total intervals (days) for all patients were 15–39 (Norway, Victoria and Manitoba) and 4–78 days (Sweden, Victoria and Ontario). The 10% longest waits ranged between 101 and 209 days (Sweden and Ontario).ConclusionsLarge international differences in breast cancer diagnostic pathways exist, suggesting some jurisdictions develop more effective strategies to optimise pathways and reduce time intervals. Targeted awareness interventions could also facilitate more timely diagnosis of breast cancer.
  •  
26.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-26 av 26

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy