SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Marée Raphaël) "

Search: WFRF:(Marée Raphaël)

  • Result 1-3 of 3
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Levels, Johannes HM, et al. (author)
  • High-density Lipoprotein proteome dynamics in human endotoxemia
  • 2011
  • In: Proteome Science. - : BiOMed Central. - 1477-5956. ; 9:34
  • Journal article (peer-reviewed)abstract
    • Background: A large variety of proteins involved in inflammation, coagulation, lipid-oxidation and lipid metabolism have been associated with high-density lipoprotein (HDL) and it is anticipated that changes in the HDL proteome have implications for the multiple functions of HDL. Here, SELDI-TOF mass spectrometry (MS) was used to study the dynamic changes of HDL protein composition in a human experimental low-dose endotoxemia model. Ten healthy men with low HDL cholesterol (0.7+/-0.1 mmol/L) and 10 men with high HDL cholesterol levels (1.9+/-0.4mmol/L) were challenged with endotoxin (LPS) intravenously (1ng/kg bodyweight). We previously showed that subjects with low HDL cholesterol are more susceptible to an inflammatory challenge. The current study tested the hypothesis that this discrepancy may be related to differences in the HDL proteome.Results: Plasma drawn at 7 time-points over a 24 hour time period after LPS challenge was used for direct capture of HDL using antibodies against apolipoprotein A-I followed by subsequent SELDI-TOF MS profiling. Upon LPS administration, profound changes in 21 markers (adjusted p-value<0.05) were observed in the proteome in both study groups. These changes were observed 1 hour after LPS infusion and sustained up to 24 hours, but unexpectedly were not different between the 2 study groups. Hierarchical clustering of the protein spectra at all time points of all individuals revealed 3 distinct clusters, which were largely independent of baseline HDL cholesterol levels but correlated with paraoxonase 1 activity. The acute phase protein serum amyloid A-1/2 (SAA-1/2) was clearly upregulated after LPS infusion in both groups and comprised both native and N-terminal truncated variants that were identified by two-dimensional gel electrophoresis and mass spectrometry. Individuals of one of the clusters were distinguished by a lower SAA-1/2 response after LPS challenge and a delayed time-response of the truncated variants.Conclusions: This study shows that the semi-quantitative differences in the HDL proteome as assessed by SELDI-TOF MS cannot explain why subjects with low HDL cholesterol are more susceptible to a challenge with LPS than those with high HDL cholesterol. Instead the results indicate that hierarchical clustering could be useful to predict HDL functionality in acute phase responses towards LPS.
  •  
2.
  • Paul-Gilloteaux, Perrine, et al. (author)
  • Bioimage analysis workflows: community resources to navigate through a complex ecosystem
  • 2021
  • In: F1000 Research. - : F1000 Research Ltd. - 2046-1402. ; 10, s. 320-320
  • Journal article (other academic/artistic)abstract
    • Workflows are the keystone of bioimage analysis, and the NEUBIAS (Network of European BioImage AnalystS) community is trying to gather the actors of this field and organize the information around them.  One of its most recent outputs is the opening of the F1000Research NEUBIAS gateway, whose main objective is to offer a channel of publication for bioimage analysis workflows and associated resources. In this paper we want to express some personal opinions and recommendations related to finding, handling and developing bioimage analysis workflows. The emergence of "big data” in bioimaging and resource-intensive analysis algorithms make local data storage and computing solutions a limiting factor. At the same time, the need for data sharing with collaborators and a general shift towards remote work, have created new challenges and avenues for the execution and sharing of bioimage analysis workflows.These challenges are to reproducibly run workflows in remote environments, in particular when their components come from different software packages, but also to document them and link their parameters and results by following the FAIR principles (Findable, Accessible, Interoperable, Reusable) to foster open and reproducible science.In this opinion paper, we focus on giving some directions to the reader to tackle these challenges and navigate through this complex ecosystem, in order to find and use workflows, and to compare workflows addressing the same problem. We also discuss tools to run workflows in the cloud and on High Performance Computing resources, and suggest ways to make these workflows FAIR. 
  •  
3.
  • Rubens, Ulysse, et al. (author)
  • BIAFLOWS : A Collaborative Framework to Reproducibly Deploy and Benchmark Bioimage Analysis Workflows.
  • 2020
  • In: Patterns (New York, N.Y.). - : Elsevier BV. - 2666-3899. ; 1:3
  • Journal article (peer-reviewed)abstract
    • Image analysis is key to extracting quantitative information from scientific microscopy images, but the methods involved are now often so refined that they can no longer be unambiguously described by written protocols. We introduce BIAFLOWS, an open-source web tool enabling to reproducibly deploy and benchmark bioimage analysis workflows coming from any software ecosystem. A curated instance of BIAFLOWS populated with 34 image analysis workflows and 15 microscopy image datasets recapitulating common bioimage analysis problems is available online. The workflows can be launched and assessed remotely by comparing their performance visually and according to standard benchmark metrics. We illustrated these features by comparing seven nuclei segmentation workflows, including deep-learning methods. BIAFLOWS enables to benchmark and share bioimage analysis workflows, hence safeguarding research results and promoting high-quality standards in image analysis. The platform is thoroughly documented and ready to gather annotated microscopy datasets and workflows contributed by the bioimaging community.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-3 of 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view