SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Marchesini L. Belelli) srt2:(2011-2014)"

Sökning: WFRF:(Marchesini L. Belelli) > (2011-2014)

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Abdalla, M., et al. (författare)
  • Simulation of CO2 and Attribution Analysis at Six European Peatland Sites Using the ECOSSE Model
  • 2014
  • Ingår i: Water, Air and Soil Pollution. - : Springer Science and Business Media LLC. - 1573-2932 .- 0049-6979. ; 225:11, s. 2182-2182
  • Tidskriftsartikel (refereegranskat)abstract
    • In this study, we simulated heterotrophic CO2 (Rh) fluxes at six European peatland sites using the ECOSSE model and compared them to estimates of Rh made from eddy covariance (EC) measurements. The sites are spread over four countries with different climates, vegetation and management. Annual Rh from the different sites ranged from 110 to 540 g C m(-2). The maximum annual Rh occurred when the water table (WT) level was between -10 and -25 cm and the air temperature was above 6.2 degrees C. The model successfully simulated seasonal trends for the majority of the sites. Regression relationships (r(2)) between the EC-derived and simulated Rh ranged from 0.28 to 0.76, and the root mean square error and relative error were small, revealing an acceptable fit. The overall relative deviation value between annual EC-derived and simulated Rh was small (-1 %) and model efficiency ranges across sites from -0.25 to +0.41. Sensitivity analysis highlighted that increasing temperature, decreasing precipitation and lowering WT depth could significantly increase Rh from soils. Thus, management which lowers the WT could significantly increase anthropogenic CO2, so from a carbon emissions perspective, it should be avoided. The results presented here demonstrate a robust basis for further application of the ECOSSE model to assess the impacts of future land management interventions on peatland carbon emissions and to help guide best practice land management decisions.
  •  
2.
  • Budishchev, A., et al. (författare)
  • Evaluation of a plot-scale methane emission model using eddy covariance observations and footprint modelling
  • 2014
  • Ingår i: Biogeosciences. - : Copernicus GmbH. - 1726-4189. ; 11:17, s. 4651-4664
  • Tidskriftsartikel (refereegranskat)abstract
    • Most plot-scale methane emission models - of which many have been developed in the recent past - are validated using data collected with the closed-chamber technique. This method, however, suffers from a low spatial representativeness and a poor temporal resolution. Also, during a chamber-flux measurement the air within a chamber is separated from the ambient atmosphere, which negates the influence of wind on emissions. Additionally, some methane models are validated by upscaling fluxes based on the area-weighted averages of modelled fluxes, and by comparing those to the eddy covariance (EC) flux. This technique is rather inaccurate, as the area of upscaling might be different from the EC tower footprint, therefore introducing significant mismatch. In this study, we present an approach to validate plot-scale methane models with EC observations using the footprint-weighted average method. Our results show that the fluxes obtained by the footprint-weighted average method are of the same magnitude as the EC flux. More importantly, the temporal dynamics of the EC flux on a daily timescale are also captured (r(2) = 0.7). In contrast, using the area-weighted average method yielded a low (r(2) = 0.14) correlation with the EC measurements. This shows that the footprint-weighted average method is preferable when validating methane emission models with EC fluxes for areas with a heterogeneous and irregular vegetation pattern.
  •  
3.
  • Peltola, O., et al. (författare)
  • Evaluating the performance of commonly used gas analysers for methane eddy covariance flux measurements: the InGOS inter-comparison field experiment
  • 2014
  • Ingår i: Biogeosciences. - : Copernicus GmbH. - 1726-4189. ; 11:12, s. 3163-3186
  • Tidskriftsartikel (refereegranskat)abstract
    • The performance of eight fast-response methane (CH4) gas analysers suitable for eddy covariance flux measurements were tested at a grassland site near the Cabauw tall tower (Netherlands) during June 2012. The instruments were positioned close to each other in order to minimise the effect of varying turbulent conditions. The moderate CH4 fluxes observed at the location, of the order of 25 nmol m(-2) s(-1), provided a suitable signal for testing the instruments' performance. Generally, all analysers tested were able to quantify the concentration fluctuations at the frequency range relevant for turbulent exchange and were able to deliver high-quality data. The tested cavity ringdown spectrometer (CRDS) instruments from Picarro, models G2311-f and G1301-f, were superior to other CH4 analysers with respect to instrumental noise. As an open-path instrument susceptible to the effects of rain, the LI-COR LI-7700 achieved lower data coverage and also required larger density corrections; however, the system is especially useful for remote sites that are restricted in power availability. In this study the open-path LI-7700 results were compromised due to a data acquisition problem in our data-logging setup. Some of the older closed-path analysers tested do not measure H2O concentrations alongside CH4 (i.e. FMA1 and DLT-100 by Los Gatos Research) and this complicates data processing since the required corrections for dilution and spectroscopic interactions have to be based on external information. To overcome this issue, we used H2O mole fractions measured by other gas analysers, adjusted them with different methods and then applied them to correct the CH4 fluxes. Following this procedure we estimated a bias of the order of 0.1 g (CH4) m(-2) (8% of the measured mean flux) in the processed and corrected CH4 fluxes on a monthly scale due to missing H2O concentration measurements. Finally, cumulative CH4 fluxes over 14 days from three closed-path gas analysers, G2311-f (Picarro Inc.), FGGA (Los Gatos Research) and FMA2 (Los Gatos Research), which were measuring H2O concentrations in addition to CH4, agreed within 3% (355-367 mg (CH4) m(-2)) and were not clearly different from each other, whereas the other instruments derived total fluxes which showed small but distinct differences (+/- 10 %, 330-399 mg (CH4) m(-2)).
  •  
4.
  • Yuan, Wenping, et al. (författare)
  • Redefinition and global estimation of basal ecosystem respiration rate
  • 2011
  • Ingår i: Global Biogeochemical Cycles. - 0886-6236. ; 25
  • Tidskriftsartikel (refereegranskat)abstract
    • Basal ecosystem respiration rate (BR), the ecosystem respiration rate at a given temperature, is a common and important parameter in empirical models for quantifying ecosystem respiration (ER) globally. Numerous studies have indicated that BR varies in space. However, many empirical ER models still use a global constant BR largely due to the lack of a functional description for BR. In this study, we redefined BR to be ecosystem respiration rate at the mean annual temperature. To test the validity of this concept, we conducted a synthesis analysis using 276 site-years of eddy covariance data, from 79 research sites located at latitudes ranging from similar to 3 degrees S to similar to 70 degrees N. Results showed that mean annual ER rate closely matches ER rate at mean annual temperature. Incorporation of site-specific BR into global ER model substantially improved simulated ER compared to an invariant BR at all sites. These results confirm that ER at the mean annual temperature can be considered as BR in empirical models. A strong correlation was found between the mean annual ER and mean annual gross primary production (GPP). Consequently, GPP, which is typically more accurately modeled, can be used to estimate BR. A light use efficiency GPP model (i.e., EC-LUE) was applied to estimate global GPP, BR and ER with input data from MERRA (Modern Era Retrospective-Analysis for Research and Applications) and MODIS (Moderate resolution Imaging Spectroradiometer). The global ER was 103 Pg C yr (-1), with the highest respiration rate over tropical forests and the lowest value in dry and high-latitude areas.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy