SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Marchesini L. Belelli) srt2:(2015-2019)"

Sökning: WFRF:(Marchesini L. Belelli) > (2015-2019)

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Metzger, Christine, et al. (författare)
  • CO2 fluxes and ecosystem dynamics at five European treeless peatlands - merging data and process oriented modeling
  • 2015
  • Ingår i: Biogeosciences. - : Copernicus GmbH. - 1726-4170 .- 1726-4189. ; 12:1, s. 125-146
  • Tidskriftsartikel (refereegranskat)abstract
    • The carbon dioxide (CO2) exchange of five different peatland systems across Europe with a wide gradient in land use intensity, water table depth, soil fertility and climate was simulated with the process oriented CoupModel. The aim of the study was to find out whether CO2 fluxes, measured at different sites, can be explained by common processes and parameters or to what extend a site specific configuration is needed. The model was calibrated to fit measured CO2 fluxes, soil temperature, snow depth and leaf area index (LAI) and resulting differences in model parameters were analyzed. Finding site independent model parameters would mean that differences in the measured fluxes could be explained solely by model input data: water table, meteorological data, management and soil inventory data. Seasonal variability in the major fluxes was well captured, when a site independent configuration was utilized for most of the parameters. Parameters that differed between sites included the rate of soil organic decomposition, photosynthetic efficiency, and regulation of the mobile carbon (C) pool from senescence to shooting in the next year. The largest difference between sites was the rate coefficient for heterotrophic respiration. Setting it to a common value would lead to underestimation of mean total respiration by a factor of 2.8 up to an overestimation by a factor of 4. Despite testing a wide range of different responses to soil water and temperature, rate coefficients for heterotrophic respiration were consistently the lowest on formerly drained sites and the highest on the managed sites. Substrate decomposability, pH and vegetation characteristics are possible explanations for the differences in decomposition rates. Specific parameter values for the timing of plant shooting and senescence, the photosynthesis response to temperature, litter fall and plant respiration rates, leaf morphology and allocation fractions of new assimilates, were not needed, even though the gradient in site latitude ranged from 48 degrees N (southern Germany) to 68 degrees N (northern Finland) differed largely in their vegetation. This was also true for common parameters defining the moisture and temperature response for decomposition, leading to the conclusion that a site specific interpretation of these processes is not necessary. In contrast, the rate of soil organic decomposition, photosynthetic efficiency, and the regulation of the mobile carbon pool need to be estimated from available information on specific soil conditions, vegetation and management of the ecosystems, to be able to describe CO2 fluxes under different conditions.
  •  
2.
  • Peltola, O., et al. (författare)
  • Studying the spatial variability of methane flux with five eddy covariance towers of varying height
  • 2015
  • Ingår i: Agricultural and Forest Meteorology. - : Elsevier BV. - 1873-2240 .- 0168-1923. ; 214, s. 456-472
  • Tidskriftsartikel (refereegranskat)abstract
    • In this study, the spatial representativeness of eddy covariance (EC) methane (CH4) measurements was examined by comparing parallel CH4 fluxes from three short (6 m) towers separated by a few kilometres and from two higher levels (20 m and 60 m) at one location. The measurement campaign was held on an intensively managed grassland on peat soil in the Netherlands. The land use and land cover types are to a large degree homogeneous in the area. The CH4 fluxes exhibited significant variability between the sites on 30-min scale. The spatial coefficient of variation (CVspa) between the three short towers was 56% and it was of similar magnitude as the temporal variability, unlike for the other fluxes (friction velocity, sensible heat flux) for which the temporal variability was considerably larger than the spatial variability. The CVspa decreased with temporal averaging, although less than what could be expected for a purely random process (1/root N), and it was 14% for 26-day means of CH4 flux. This reflects the underlying heterogeneity of CH4 flux in the studied landscape at spatial scales ranging from 1 ha (flux footprint) to 10 km(2) (area bounded by the short towers). This heterogeneity should be taken into account when interpreting and comparing EC measurements. On an annual scale, the flux spatial variability contributed up to 50% of the uncertainty in CH4 emissions. It was further tested whether EC flux measurements at higher levels could be used to acquire a more accurate estimate of the spatially integrated CH4 emissions. Contrarily to what was expected, flux intensity was found to both increase and decrease depending on measurement height. Using footprint modelling, 56% of the variation between 6 m and 60 m CH4 fluxes was attributed to emissions from local anthropogenic hotspots (farms). Furthermore, morning hours proved to be demanding for the tall tower EC where fluxes at 60 m were up to four-fold those at lower heights. These differences were connected with the onset of convective mixing during the morning period. (C) 2015 The Authors. Published by Elsevier B.V.
  •  
3.
  •  
4.
  • Tchebakova, N. M., et al. (författare)
  • Energy and Mass Exchange and the Productivity of Main Siberian Ecosystems (from Eddy Covariance Measurements). 2. Carbon Exchange and Productivity
  • 2015
  • Ingår i: Biology Bulletin of the Russian Academy of Science. - 1062-3590. ; 42:6, s. 579-588
  • Tidskriftsartikel (refereegranskat)abstract
    • Direct measurements of CO2 fluxes by the eddy covariance method have demonstrated that the examined middle-taiga pine forest, raised bog, true steppe, and southern tundra along the Yenisei meridian (similar to 90 degrees E) are carbon sinks of different capacities according to annual output. The tundra acts as a carbon sink starting from June; forest and bog, from May; and steppe, from the end of April. In transitional seasons and winter, the ecosystems are a weak source of carbon; this commences from September in the tundra, from October in the forest and bog, and from November in the steppe. The photosynthetic productivity of forest and steppe ecosystems, amounting to 480-530 g C/(m(2) year), exceeds by 2-2.5 times that of bogs and tundras, 200-220 g C/(m(2) year). The relationships between the heat balance structure and CO2 exchange are shown. Possible feedback of carbon exchange between the ecosystems and atmosphere as a result of climate warming in the region are assessed.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy