SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Markstedt Kajsa 1989) srt2:(2017)"

Sökning: WFRF:(Markstedt Kajsa 1989) > (2017)

  • Resultat 1-2 av 2
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Markstedt, Kajsa, 1989, et al. (författare)
  • Biomimetic Inks Based on Cellulose Nanofibrils and Cross-Linkable Xylans for 3D Printing
  • 2017
  • Ingår i: ACS Applied Materials & Interfaces. - : American Chemical Society (ACS). - 1944-8252 .- 1944-8244. ; 9:46, s. 40878-40886
  • Tidskriftsartikel (refereegranskat)abstract
    • This paper presents a sustainable all-wood-based ink which can be used for 3D printing of constructs for a large variety of applications such as clothes, furniture, electronics, and health care products with a customized design and versatile gel properties. The 3D printing technologies where the material is dispensed in the form of liquids, so called inks, have proven suitable for 3D printing dispersions of cellulose nanofibrils (CNFs) because of their unique shear thinning properties. In this study, novel inks were developed with a biomimetic approach where the structural properties of cellulose and the cross-linking function of hemicelluloses that are found in the plant cell wall were utilized. The CNF was mixed with xylan, a hemicellulose extracted from spruce, to introduce cross-linking properties which are essential for the final stability of the printed ink. For xylan to be cross-linkable, it was functionalized with tyramine at different degrees. Evaluation of different ink compositions by rheology measurements and 3D printing tests showed that the degree of tyramine substitution and the ratio of CNFs to xylan-tyramine in the prepared inks influenced the printability and cross-linking density. Both two-layered gridded structures and more complex 3D constructs were printed. Similarly to conventional composites, the interactions between the components and their miscibility are important for the stability of the printed and cross-linked ink. Thus, the influence of tyramine on the adsorption of xylan to cellulose was studied with a quartz crystal microbalance to verify that the functionalization had little influence on xylan's adsorption to cellulose. Utilizing xylan-tyramine in the CNF dispersions resulted in all-wood-based inks which after 3D printing can be cross-linked to form freestanding gels while at the same time, the excellent printing properties of CNFs remain intact.
  •  
2.
  • Markstedt, Kajsa, 1989, et al. (författare)
  • Synthesis of tunable hydrogels based on O-acetyl-galactoglucomannans from spruce
  • 2017
  • Ingår i: Carbohydrate Polymers. - : Elsevier BV. - 0144-8617. ; 157, s. 1349-1357
  • Tidskriftsartikel (refereegranskat)abstract
    • © 2016 Elsevier LtdHydrogels with tunable mechanical properties based on O-acetyl-galactoglucomannans (GGMs) from spruce functionalized with tyramine, a molecule containing crosslinkable phenolic groups, were prepared. Gel formation was induced by enzymatic crosslinking at the addition of horse radish peroxidase and hydrogen peroxide to the modified GGMs. The degree of substitution determined the hydrogels final properties, and was varied by TEMPO oxidation of GGM to a degree of oxidation from 10 to 60%. GGM and its derivatives were characterized by gas chromatography and high pressure size exclusion chromatography to analyze sugar composition and molar mass, respectively. Tyramine-conjugated GGM was evaluated by nuclear magnetic resonance, fourier transform infrared spectroscopy and elemental analysis. Measurements of moduli over time showed crosslinking within 20 s and maximum stress of the prepared gels were compared by compression testing. Overall this system presents a cell friendly hydrogel from a renewable, low cost resource which could be applied in cell delivery, wound dressings, and biofabrication.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-2 av 2

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy